• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 研究成果報告書

医薬ビッグデータ解析による革新的AI創薬手法の開発と難治性疾患治療薬の発見

研究課題

  • PDF
研究課題/領域番号 18H03334
研究種目

基盤研究(B)

配分区分補助金
応募区分一般
審査区分 小区分62010:生命、健康および医療情報学関連
研究機関九州工業大学

研究代表者

山西 芳裕  九州工業大学, 大学院情報工学研究院, 教授 (60437267)

研究分担者 沖米田 司  関西学院大学, 理工学部, 教授 (90398248)
谷 憲三朗  東京大学, 定量生命科学研究所, 特任教授 (00183864)
土方 康基  東京大学, 医科学研究所, 特任助教 (80460856)
研究期間 (年度) 2018-04-01 – 2021-03-31
キーワード機械学習 / ビッグデータ / 創薬 / 人工知能 / 難治性疾患
研究成果の概要

本研究では、医薬ビッグデータと人工知能(AI)の基盤技術である機械学習を用いた創薬を実現するための情報基盤技術を構築する。医薬品、植物、食品成分などの化合物に関する情報、遺伝子、タンパク質、糖鎖など生体分子に関する情報、難治性疾患に関するオミックス情報やSNPなどのゲノム情報を基に、グラフ畳み込みニューラルネットワークや再帰的ニューラルネットワークの枠組みで、化合物の標的タンパク質プロファイルを予測するためのモデルを構築した。化合物の化学構造の適用範囲を考慮したアルゴリズムも構築した。最終的に、悪性リンパ腫と嚢胞性線維症に対して、医薬品候補化合物を網羅的に予測し、予測結果の一部を検証した。

自由記述の分野

バイオインフォマティクス

研究成果の学術的意義や社会的意義

疾患治療に有用な化合物の同定は、人類の医療やヘルスケアにとって最重要課題である。現在でも有効な治療法が無い難治性疾患や希少疾患は多く、疾患に苦しむ患者に対する迅速な救済措置が必要である。しかしながら、最近の新薬開発は低迷しており、新薬を一個開発するのに数千億円の研究開発費と10年以上の歳月を要すると云われている。本研究では、医薬ビッグデータと人工知能(AI)の基盤技術である機械学習を用いた創薬「AI創薬」を提唱し、それを実現するための機械学習手法の研究開発を行なった。深層学習の予測モデルを構築し、医薬品候補の化合物を情報化学的にスクリーニングする技術基盤を構築することができた。

URL: 

公開日: 2022-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi