• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 実績報告書

From Reports to Knowledge for Patient Safety Improvement through Advancements in Artificial Intelligence

研究課題

研究課題/領域番号 18H03336
研究機関聖路加国際大学

研究代表者

ウォン スイー  聖路加国際大学, 専門職大学院公衆衛生学研究科(公衆衛生大学院), 准教授 (70791599)

研究分担者 林 邦好  聖路加国際大学, 専門職大学院公衆衛生学研究科(公衆衛生大学院), 講師 (00793217)
笹野 遼平  名古屋大学, 情報学研究科, 准教授 (70603918)
研究期間 (年度) 2018-04-01 – 2021-03-31
キーワードPatient Safety / Incident reports / Named entity / Adverse drug events / Deep learning / Natural language processing
研究実績の概要

In the last fiscal year, the research team focused on the development of annotation guideline for medication errors (Task 1) and designed named entity recognition (NER) model development framework (Task 2). Our team has performed narrative review on relevant state of science literature, prepared the relevant incident data and information (IRB approved), discussed the proposed guideline with field experts. In terms of the design of NER model, we constructed NER program using biLTSM and BERT methods, explored the model performance using sample annotated data, and carried out intensive experiments. These tasks have established a solid foundation for the team for developing the prototype NER system development (Task 3) in year 2 and 3.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We closely followed the proposed research schedule, fully accomplished the outlined research tasks and reported progress to team members in regular whole group research meetings. Together with two Co-Is (kenkyu-buntansha) - Dr. Sasano and Dr. Hayashi, Dr. Wong led project team members and research assistants with medicine, pharmacy and computer science backgrounds to achieve the above research tasks. The team has been working closely with other collaborators within Japan and has invited international experts to facilitate global exchange. Some of our ongoing research outcomes have been accepted in international conferences (such as Medinfo 2019, CSHI 2019 etc) and our group disseminated our ongoing outcomes at AI acceleration meeting at Ministry of Health, Labour and Welfare.

今後の研究の推進方策

In the next fiscal year, the research team will focus on the validation of taxonomy for medication error for incident reports (Task 1) and finalizing named entity recognition (NER) model framework for incident reports learning (Task 2). Using our incident report data, our team will validate the annotation guideline and create gold standard annotated incident reports data for NER model training and validation. We will evaluate multiple promising NER program settings that are suitable for incident report learning and carry out extensive experiments to enhance model performance. In the latter part of this fiscal year, we will design and develop prototype NER system development (Task 3) by incorporating the NER model prediction as interactive outputs to aid incident reporting.

  • 研究成果

    (8件)

すべて 2019 2018

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (4件) (うち国際学会 3件、 招待講演 1件) 学会・シンポジウム開催 (2件)

  • [雑誌論文] Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications2019

    • 著者名/発表者名
      Magrabi Farah、Ammenwerth Elske、McNair Jytte Brender、De Keizer Nicolet F.、Hypponen Hannele、Nykanen Pirkko、Rigby Michael、Scott Philip J.、Vehko Tuulikki、Wong Zoie Shui-Yee、Georgiou Andrew
    • 雑誌名

      Yearbook of Medical Informatics

      巻: 28 ページ: 128~134

    • DOI

      10.1055/s-0039-1677903

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] A Framework of Rebalancing Imbalanced Healthcare Data for Rare Events Classification: A Case of Look-Alike Sound-Alike Mix-Up Incident Detection2018

    • 著者名/発表者名
      Zhao Y, Wong ZSY, Tsui KL
    • 雑誌名

      Journal of Healthcare Engineering

      巻: 6275435 ページ: 11

    • DOI

      10.1155/2018/6275435

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Exploring Hidden In-Hospital Fall Clusters from Incident Reports using Text Analytics2019

    • 著者名/発表者名
      Liu J, Wong ZSY, Tsui KL, So HY, Kwok A
    • 学会等名
      Medinfo
    • 国際学会
  • [学会発表] Classification Scheme for Incident Report of Medication Errors2019

    • 著者名/発表者名
      Shiima Y, Wong ZSY
    • 学会等名
      Context Sensitive Health Informatics (CSHI)
    • 国際学会
  • [学会発表] From Reports to Knowledge for Patient Safety Improvement through Advancements in Artificial Intelligence2019

    • 著者名/発表者名
      Wong ZSY
    • 学会等名
      The 7th meeting of Health and medical field AI development acceleration consortium, Ministry of Health, Labour and Welfare (MHLW)
    • 招待講演
  • [学会発表] Comparison of Classification Schemes for the Development of Adverse Drug Events Named Entity2018

    • 著者名/発表者名
      Wong ZSY
    • 学会等名
      Asian Network for Quality (ANQ)
    • 国際学会
  • [学会・シンポジウム開催] IT and Patient Safety: Learning from Incident Reports2019

  • [学会・シンポジウム開催] . Multitask Recurrent Neural Network: An Application on Predicting Depressive Disorders in the Elderly2019

URL: 

公開日: 2019-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi