• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

幾何学的測度論を用いた動的変分問題の多面的研究

研究課題

研究課題/領域番号 18H03670
研究機関東京工業大学

研究代表者

利根川 吉廣  東京工業大学, 理学院, 教授 (80296748)

研究分担者 高坂 良史  神戸大学, 海事科学研究科, 准教授 (00360967)
石井 克幸  神戸大学, 海事科学研究科, 教授 (40232227)
高棹 圭介  京都大学, 理学研究科, 特定准教授 (50734472)
可香谷 隆  九州大学, マス・フォア・インダストリ研究所, 助教 (60814431)
小野寺 有紹  東京工業大学, 理学院, 准教授 (70614999)
三浦 達哉  東京工業大学, 理学院, 助教 (40838744)
研究期間 (年度) 2018-04-01 – 2023-03-31
キーワードMean curvature flow / Calculus of variations / Geometric measure theory / Minimal surface / Geometric analysis
研究実績の概要

主な研究成果として以下を挙げる.
(1) 2019年度に行ったSalvatore Stuvard(テキサス大学オースチン校)との共同研究(2021年に出版済)の研究では,境界を固定した一般化された意味での平均曲率流であるブラッケ流の存在定理を示したが,その結果の応用として,特異点を持つ一般化された極小曲面を初期値としたブラッケ流の存在定理について研究を行った.より正確には,極小曲面は平均曲率が0であるためにそれ自体が動かないブラッケ流であるのだが,十分平坦な特異点がある場合,それを初期値として連続的に動き出すブラッケ流が存在することを証明した.どれくらい平坦であればよいかという特徴付けは,一般化された極小曲面の正則性定理との兼ね合いを考える上で興味深い結果となっている.この結果は一般化された極小曲面に対しての動的な意味での安定性の概念を初めて提示するものとなっている点,意義ある結果となっている.論文は査読中である.
(2)2017年に出版されたLami Kim(延世大学)との共同研究を異なる観点からStuvardと見直し,以下の研究結果を得た.有限な測度をもつ余次元1の閉修正可能集合を初期値として任意に与えた時,2017年の結果では時間発展するブラッケ流の時間大域解の存在を証明したが,構成方法を修正することにより,その解は同時に有界変動関数の意味での平均曲率流になっていることを証明した.この結果,ブラッケ流が囲む領域が一般化された意味での速度場を持ち,領域のルベーグ測度の変化率がその速度場の積分値で正確に与えられる.この速度場はブラッケ流が単位密度流である場合にはブラッケ流の平均曲率ベクトルと領域の外向き単位法ベクトルの内積で与えられることも示した.論文は準備中である.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

研究実績(1)で述べた結果については当初予想していなかったシャープな平坦さの条件を見つけることができた点,幾何学的測度論の特に正則性理論の専門家には高い関心を持たれている.研究対象となっている特異点は測度論的接空間が多重度を持つものであり,このような特異点に対しては長年研究手法について何も見通しが立っていない状況である.その中,動的な観点からの特異点解析の可能性を示すことができたというのは当初の計画以上の結果であると言える.研究実績(2)では2017年の研究結果を本質的に改良することができ,これも当初予想していなかった研究結果となっている.これら研究結果はさらに当初予想していなかった興味深い研究トピックを自然に誘導している.

今後の研究の推進方策

十分平坦な特異点をもつ極小曲面であれば,動的な意味で不安定であることが分かったが,面積最小性を持たない余次元1の特異点集合を持つ極小曲面であればやはり動的に不安定であることが予想される.これについて予備的な計算を行ったが,この問題について引き続き研究を進める.また研究実績(2)の研究を行う過程で,一般化された極小曲面およびブラッケ流の多重度が2以上の点における2次近似問題について興味深いヒントを得た.一般にこれら対象物は測度論的な弱い意味で,可算個の2回連続微分可能多様体の集合和の中に含まれることが知られているのだが,可能性として一般化された極小曲面はより強い意味で含まれるかあるいはある種の2次近似評価ができるのではないかと予想される.研究業績(2)の論文を仕上げたのちにこの問題に取り組みたい.

  • 研究成果

    (12件)

すべて 2021 2020 2019 その他

すべて 国際共同研究 (2件) 雑誌論文 (3件) (うち国際共著 2件、 査読あり 3件、 オープンアクセス 2件) 学会発表 (7件) (うち国際学会 5件、 招待講演 7件)

  • [国際共同研究] テキサス大学オースチン校(米国)

    • 国名
      米国
    • 外国機関名
      テキサス大学オースチン校
  • [国際共同研究] 延世大学(韓国)

    • 国名
      韓国
    • 外国機関名
      延世大学
  • [雑誌論文] An existence theorem for Brakke flow with fixed boundary conditions2021

    • 著者名/発表者名
      Stuvard Salvatore、Tonegawa Yoshihiro
    • 雑誌名

      Calculus of Variations and Partial Differential Equations

      巻: 60 ページ: -

    • DOI

      10.1007/s00526-020-01909-Z

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Existence and regularity theorems of one-dimensional Brakke flows2020

    • 著者名/発表者名
      Kim Lami、Tonegawa Yoshihiro
    • 雑誌名

      Interfaces and Free Boundaries

      巻: 22 ページ: 505~550

    • DOI

      10.4171/IFB/448

    • 査読あり / 国際共著
  • [雑誌論文] A diffused interface with the advection term in a Sobolev space2020

    • 著者名/発表者名
      Tonegawa Yoshihiro、Tsukamoto Yuki
    • 雑誌名

      Calculus of Variations and Partial Differential Equations

      巻: 59 ページ: -

    • DOI

      10.1007/s00526-020-01860-z

    • 査読あり / オープンアクセス
  • [学会発表] An existence theorem for Brakke flow with fixed boundary condition2020

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      Joint Mathematics Meetings 2020, Denver, USA
    • 国際学会 / 招待講演
  • [学会発表] Singular perturbation problems of phase interfaces2019

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      Yonsei Univ. Korea
    • 国際学会 / 招待講演
  • [学会発表] Modica-Mortolaエネルギーの特異摂動極限について2019

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      明治非線型数理セミナー, 明治大学
    • 招待講演
  • [学会発表] Singular perturbation problems of phase interfaces2019

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      研究集会「非線形偏微分方程式の理論と応用」, Hokkaido University
    • 招待講演
  • [学会発表] An existence theorem for Brakke flow with fixed boundary condition2019

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      Gradient flows and related topics: analysis and applications, Kanazawa
    • 国際学会 / 招待講演
  • [学会発表] An existence theorem for Brakke flow with fixed boundary condition2019

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      Partial differential equations, Oberwolfach, Germany
    • 国際学会 / 招待講演
  • [学会発表] Singular perturbation problems of phase interfaces2019

    • 著者名/発表者名
      Tonegawa Yoshihiro
    • 学会等名
      Workshop on New Trends in Variational Models: From Superconductors to Liquid Crystals, Fields Institute, Canada
    • 国際学会 / 招待講演

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi