研究課題
人工光合成は可視光を利用した物質変換を目指す研究であるが、現状では非常に低い性能にとどまっている。天然の光合成では、光捕集系で獲得されたエネルギーを用いて、反応中心タンパク質で一連の電子移動反応を行い、一方水酸化触媒から電子を奪うことで高活性な酸化種を生み出し、水からの電子引き抜き、酸素発生を可能にしている。本提案では上記の過程を人工的に模倣し、可視光物質変換機構を詳細に解明することで、人工光合成の高効率化を目指した。具体的には、可視光を捕集可能な酸化力の強い光増感分子を合成し、水酸化触媒分子と共に半導体電極上に固定化し、可視光応答型水分解セルを構築した。特に水酸化触媒分子において、触媒活性部位と半導体電極への固定化部位の間の距離を変化させることを試み、予備的ながらもその距離依存性を見出した。一方、上記の分子を用いた人工光合成は色素増感太陽電池と共通する点が多く、色素増感太陽電池の高効率化から得られる情報は人工光合成においても有用である。いずれの系においても、太陽光の効率的な利用は高性能化に必須である。そこで色素増感太陽電池において、可視光・近赤外光の効率的な捕集が原理的に可能なポルフィリンに着目した。具体的には、置換メチレン構造で縮環したプッシュ・プル型のポルフィリン色素を分子設計・合成し、現在知られている最も性能の高いポルフィリン色素GY50を上回る太陽電池性能を達成することができた。また、高い開放電圧が期待できる一連の新規な銅レドックス対を分子設計・合成し、光電変換特性との相関を解明することができた。さらに、色素増感太陽電池に適用可能な新規ポルフィリンの合成に成功した。
令和2年度が最終年度であるため、記入しない。
すべて 2021 2020 その他
すべて 国際共同研究 (1件) 雑誌論文 (3件) (うち国際共著 1件、 査読あり 3件) 学会発表 (1件) (うち招待講演 1件) 図書 (1件)
Chem. Lett.
巻: 49 ページ: 936-939
10.1246/cl.200317
Chem. Eur. J.
巻: 52 ページ: 12043-12049
10.1002/chem.202001361
ACS Adv. Energy Mater.
巻: 3 ページ: 12460-12467
10.1021/acsaem.0c02427