令和元年度の研究では、テュラエフが1990年に導入したあるスケイン代数(ここではブラケット・スケイン代数と呼ぶ)を用いた研究が中心であった。令和元年度の研究では、ブラケット・スケイン代数の値をとるホモロジー・シリンダーの不変量を構成した。この不変量は、ホモロジー・シリンダーの完備基本群への作用と同値である。 このブラケット・スケイン代数での研究は、基本群の研究の新たなアプローチとして評価できるが、基本群の情報しか持たないことが問題点である。令和2年度の研究では、他のスケイン代数でホモロジー・シリンダーの不変量を構成することができた。この不変量は、カウフマン・ブラケット・スケイン代数や、HOMFLYPTスケイン代数で構成ができた。カウフマン・ブラケット・スケイン代数でのホモロジー・シリンダーの不変量は基本群のsl(2) 表現と sl(2) 大槻級数二つの情報を持つことが分かった。さらに、HOMFLY-PT スケイン代数でのホモロジー・シリンダーの不変量は基本群の情報と sl(N)大槻級数すべての情報を持つことが分かった。このように、これらのスケイン代数でのホモロジー・シリンダーの不変量は量子トポロジーの情報も持っている。 この不変量は、二つの側面を持つ。一つ目は、ブラケット・スケイン代数の不変量を精密化していることである。二つ目は、整係数ホモロジー球面の不変量である大槻級数をホモロジー・シリンダーに拡張したという側面である。実際、このスケイン代数の不変量の構成の仕方は、整係数ホモロジー球面の集合を閉円盤を底面とするホモロジー・シリンダーの集合とみなした時に、カウフマン・ブラケット・スケイン代数でのホモロジー・シリンダーの不変量は sl(2) 大槻級数と一致し、さらに、HOMFLY-PTスケイン代数でのホモロジー・シリンダーの不変量を全てのsl(N)大槻級数と一致する。
|