研究課題/領域番号 |
18K03238
|
研究機関 | 名古屋大学 |
研究代表者 |
ダルポ エリック 名古屋大学, 多元数理科学研究科(国際), 准教授 (00785959)
|
研究期間 (年度) |
2018-04-01 – 2023-03-31
|
キーワード | Fractionally Calabi-Yau / self-injective algebra / periodic / projective resolution |
研究実績の概要 |
This year, we have extended earlier results characterising periodicity in trivial extension algebras to more general classes of finite-dimensional self-injective algebras. The principal result characterises periodicity and twisted periodicity of a self-injective orbit algebra in terms of the (twisted) fractionally Calabi-Yau property of the associated algebra of finite global dimension.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
The result obtained are in line with the expectations.
|
今後の研究の推進方策 |
I plan to study mutation theory of d-silting objects of derived categories, in particular how it relates to mutation of cluster-tilting subcategories.
|
次年度使用額が生じた理由 |
The grant will be used for attending one or two international conferences and international research visits, and for buying books and other equipment.
|