• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

Arithmetic cohomology over local fields

研究課題

研究課題/領域番号 18K03258
研究機関立教大学

研究代表者

ガイサ トーマス  立教大学, 理学部, 教授 (30571963)

研究期間 (年度) 2018-04-01 – 2024-03-31
キーワードWeil etale cohomology / Local class field theory / Duality / Locally compact groups / One-motives / Birch Swinnerton Dyer
研究実績の概要

In my ongoing project on Weil-etale cohomology for schemes over henselian
discrete valuation rings, finite fields, and arithmetic schemes, I was able to finalize publication of the following results:
Joint with B.Morin, we outline the definition of a Weil-etale cohomology theory for varieties over local fields which satisfy a Pontrjagin duality theory. The groups are objects of the heart of the t-structure on the derived category of locally compact abelian groups (this work is accepted for publication and published online).
As an application we prove results on class field theory over local fields, generalizing and improving work of S.Saito and Yoshida. We give an integral model for the fundamental group, and some extra information on the kernel of the reciprocity map (a preprint is submitted for publication).
In joint work with T.Suzuki, we generalized our work on the Weil-etale version of the Birch and Swinnerton-Dyer conjecture to one-motives. In particular, our work gives a new proof of the Tamagawa number formula of Oda (this is published).

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

The work was slightly delayed due to the corona measures, and the project had to continue into an extra year.

今後の研究の推進方策

It is the last year of the project and it only remains to publish the last remaining preprint, to survey the results we obtained, and to attend conferences to present my results.

次年度使用額が生じた理由

Research was delayed due to corona and corona measures. It was difficult or impossible to meet my co-workers and to hold conferences.
I am planing to use the remaining amount of my grand to attend conferences and discuss the results.

  • 研究成果

    (7件)

すべて 2024 2023 2022 その他

すべて 国際共同研究 (2件) 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件) 学会発表 (1件) (うち国際学会 1件、 招待講演 1件) 備考 (1件) 学会・シンポジウム開催 (1件)

  • [国際共同研究] Bordeaux University(フランス)

    • 国名
      フランス
    • 外国機関名
      Bordeaux University
  • [国際共同研究] Heidelberg University/Wuppertal Univesity(ドイツ)

    • 国名
      ドイツ
    • 外国機関名
      Heidelberg University/Wuppertal Univesity
  • [雑誌論文] PONTRYAGIN DUALITY FOR VARIETIES OVER p-ADIC FIELDS2024

    • 著者名/発表者名
      T.H.Geisser, B.Morin
    • 雑誌名

      Journal of the Institute of Mathematics of Jussieu

      巻: 23 ページ: 425-462

    • DOI

      10.1017/S1474748022000469

    • 査読あり / 国際共著
  • [雑誌論文] Special values of L-functions of one-motives over function fields2022

    • 著者名/発表者名
      Geisser Thomas H.、Suzuki Takashi
    • 雑誌名

      Journal fur die reine und angewandte Mathematik (Crelles Journal)

      巻: 793 ページ: 281~304

    • DOI

      10.1515/crelle-2022-0081

    • 査読あり / 国際共著
  • [学会発表] Brauer groups and Neron-Severi groups of surfaces over finite fields2022

    • 著者名/発表者名
      Thomas Geisser
    • 学会等名
      L-function and motives in Niseko
    • 国際学会 / 招待講演
  • [備考] On Integral CFT for varieties over p-adic fields

    • URL

      https://arxiv.org/abs/2211.13463

  • [学会・シンポジウム開催] Motives in Tokyo 20232023

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi