• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実施状況報告書

確率的変分問題の離散化とスケール極限

研究課題

研究課題/領域番号 18K03343
研究機関青山学院大学

研究代表者

市原 直幸  青山学院大学, 理工学部, 准教授 (70452563)

研究期間 (年度) 2018-04-01 – 2022-03-31
キーワードマルコフ決定過程 / 粘性ハミルトン・ヤコビ方程式 / エルゴード問題 / 一般化主固有値
研究実績の概要

今年度は,吸収状態をもつマルコフ決定過程に対する最適性方程式の解の長時間挙動について考察した.具体的には,高々可算集合を状態空間とする離散時間の有限期間マルコフ決定過程に対して,値関数の満たす最適性方程式(非線形差分方程式)の解の長時間挙動を,付随するエルゴード問題の一般化主固有値により特徴づけた.特に,適当な初期条件のもとで,最適性方程式の解は一般化主固有値の値に応じて以下に述べる3種類の異なる振る舞いを示すことがわかった.
(1) エルゴード問題の一般化主固有値が負ならば,最適性方程式の解は定常問題の最小解に収束する.
(2) エルゴード問題の一般化主固有値が正ならば,最適性方程式の解はエルゴード問題のある解に収束する.
(3) エルゴード問題の一般化主固有値が零ならば,最適性方程式の解は正の無限大に対数オーダーで発散する.
このことから,終端時刻が十分大きい場合の有限期間マルコフ決定過程は,吸収状態の存在により最適戦略が大きく変化することがわかった.上記の結果は,吸収状態をもたないマルコフ決定過程に対する最適性方程式の解の長時間挙動と大きく異なることに注意する.実際,吸収状態をもたない場合には(1)と(3)は起こらず,解の長時間挙動は一般化主固有値の値に関わらず(2)と同様の振る舞いをすることが示される.
なお,今年度に考察した問題は,2次増大ハミルトニアンを持つ粘性ハミルトン・ヤコビ方程式の初期値・境界値問題に対する解の長時間挙動について既に知られている結果の離散版と考えることができる.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

当初目標としていた粘性ハミルトン・ヤコビ方程式の離散化の一つとして,適切なクラスのマルコフ決定過程に関する新たな結果が得られたため.

今後の研究の推進方策

今年度の成果を踏まえて,より広いクラスの粘性ハミルトン・ヤコビ方程式に対する離散化の方法を探る.

次年度使用額が生じた理由

研究集会等の中止により,当初予定されていた出張がキャンセルされたため.未使用分は次年度における旅費として使用する予定である.

  • 研究成果

    (5件)

すべて 2020 2019 その他

すべて 国際共同研究 (1件) 学会発表 (3件) (うち招待講演 1件) 備考 (1件)

  • [国際共同研究] University of Tours(フランス)

    • 国名
      フランス
    • 外国機関名
      University of Tours
  • [学会発表] Sharp estimates of the generalized principal eigenvalue for superlinear viscous Hamilton-Jacobi equations with inward drift2020

    • 著者名/発表者名
      Naoyuki Ichihara
    • 学会等名
      大阪大学確率論セミナー
    • 招待講演
  • [学会発表] 境界条件を持つ有限期間のマルコフ決定過程に対する値関数の収束について2020

    • 著者名/発表者名
      市原直幸
    • 学会等名
      日本数学会2020年度年会
  • [学会発表] 内向きドリフトを持つ粘性Hamilton-Jacobi方程式に対する一般化主固有値の精密評価について2019

    • 著者名/発表者名
      E. Chasseigne, 市原直幸
    • 学会等名
      日本数学会 2019 年度秋季総合分科会
  • [備考] Naoyuki Ichihara's website

    • URL

      https://sites.google.com/site/naoyukiichihara/

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi