研究課題/領域番号 |
18K03475
|
研究機関 | 国立研究開発法人理化学研究所 |
研究代表者 |
大塚 雄一 国立研究開発法人理化学研究所, 計算科学研究センター, 研究員 (30390652)
|
研究期間 (年度) |
2018-04-01 – 2021-03-31
|
キーワード | 物性理論 / グラフェン / 金属絶縁体転移 / 電子格子相互作用 / 量子モンテカルロ法 / ディラック電子 |
研究実績の概要 |
グラフェンの最も基礎的な理論模型であるハニカム格子上のハバード模型において、相互作用により引き起こされる金属-絶縁体転移は三種類に大別されることが知られている。これは、素粒子物理のGross-Neveu模型に基づく知見によるものであり、それぞれの普遍性クラスはchiral-Z2、chiral-XY、chiral-Heisenbergと呼ばれている。Gross-Neveu模型そのものの研究では、これらの普遍性クラスを特徴づける臨界指数の計算は近似的な結果にとどまっていた。しかし最近、それぞれの普遍性クラスの臨界現象を物性分野の格子模型に基づくアプローチで調べる試みが精力的に行われるようになっている。一連の数値的研究と繰り込み群法などの解析計算により、Gross-Neveu模型の普遍性クラスの臨界指数はある程度明らかになりつつある。特に、chiral-Z2クラスは良く調べられており、多くの模型でシミュレーションと解析解の一致が確認されている。一方、chiral-Heisenbergクラスでは臨界指数の評価に手法や模型による差異がまだ大きく、より詳細な評価が求められている。そこで我々はこのクラスに属する格子模型として新たにd波対称性をもつBCS超伝導状態を考え、そこからのハバード型相互作用による反強磁性転移を詳細に検討した。これまで開発・高度化を行ってきた基底状態の補助場量子モンテカルロコードを用いることで大規模シミュレーションを行い、さらに得られた物理量に対して精密な有限サイズスケーリング解析を行った。その結果、このクラスを特徴づける臨界指数は基本的には我々が以前別の模型で消化した結果と統計誤差の範囲で良く一致することが分かった。より詳しく見ると、反強磁性秩序変数に対応する臨界指数であるηの値が以前の計算では補正項を入れない結果に近くなることが分かった。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
金属絶縁体転移を始めとする量子相転移を高精度に調べるための現象論繰り込み群に基づく解析方法が電子系でもうまく働くことが確認された。この方法は今後格子自由度を含む模型に関しても問題なく適用可能であると考えられるため。
|
今後の研究の推進方策 |
相互作用するディラック電子系における格子自由度を加味した大規模計算に進む。まず、格子自由度に関しては平均場を用いる。また、最近のHolstein模型の研究[arXiv:1910.01146]で開発されている、補助場法に基づく格子自由度の揺らぎまで含む計算手法の採用を検討する。
|
次年度使用額が生じた理由 |
京コンピュータの停止およびポスト京コンピュータ(富岳)の設置にともない、計算機室が長期に渡って停電状態となったため。今後はサーバルームではなく居室に設置可能なワークステーションの導入を行うことを予定している。計算性能自体が大きく低下することはないため、課題遂行への特段の問題は生じない。
|