• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2018 年度 実施状況報告書

Using Containment Relations to Understand and Compute Width Parameters of Graphs

研究課題

研究課題/領域番号 18K11157
研究機関電気通信大学

研究代表者

BELMONTE Remy  電気通信大学, 大学院情報理工学研究科, 助教 (80780147)

研究期間 (年度) 2018-04-01 – 2023-03-31
キーワードWidth parameters / Reconfiguration / Parameterized complexity / Structural parameters
研究実績の概要

Over the course of the previous fiscal year, the following results have been obtained as part of the project, and have been published in international, peer-reviewed conferences:
- We studied the Colorable Set Reconfiguration problem on split and chordal graphs, under the token sliding rule. In particular, we solved an open problem in the area of combinatorial reconfiguration by proving that Independent Set Reconfiguration (equivalently, 1-Colorable Set Reconfiguration) remains PSPACE-complete on split graphs. We also showed that Colorable Set Reconfiguration can be solved efficiently on chordal graphs, for any number of colors other than 1. These results were published at STACS 2019.
- We studied the parameterized complexity of computing a smallest safe set, a recently introduced measure of a graph's "robustness", under various structural parameterizations, such as pathwidth and clique-width. In particular, the problem is FPT when parameterized by neighborhood diversity, but not when parameterized by pathwidth, and this lower bound is essentially tight when parameterized by clique-width. These results were published at CIAC 2019.
- We proved that Independent Set Reconfiguration is fixed-parameter tractable when parameterized by modular-width, under all three standard reconfiguration rules. These results have been accepted for publication at WG 2019.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

While the amount and quality of results obtained so far has been high, they mostly pertain to purely algorithmic use of width parameters, rather than their structural study for computational purpose, which forms the main purpose of this project. Some of my current projects aim at correcting this status (see Future Work section below). However, it is important to note that those problems are notoriously difficult to tackle.

今後の研究の推進方策

I am currently working on the following ongoing projects:
- The complexity of parity variants of classical problems on graphs of bounded rank-width. In particular, we consider variants of the well-known odd subgraph conjecture on graphs of bounded rank-width.
- The parameterized complexity of Grundy coloring, where one seeks to compute a worst-case, greedy, proper coloring of a graph. We study the problem under several parameterizations, such as clique-width, pathwidth and tree-depth.
I am also working on problems related to computing width parameters such as clique-width by making use of containment relations, such as identifying induced subgraph obstruction sets for graphs of bounded clique-width on some restricted classes of graphs.

  • 研究成果

    (6件)

すべて 2019 その他

すべて 国際共同研究 (2件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (3件) (うち国際学会 2件)

  • [国際共同研究] LAMSADE/Universite Paris Dauphine(フランス)

    • 国名
      フランス
    • 外国機関名
      LAMSADE/Universite Paris Dauphine
  • [国際共同研究] LIRMM/Universite de Montpellier/CNRS(フランス)

    • 国名
      フランス
    • 外国機関名
      LIRMM/Universite de Montpellier/CNRS
  • [雑誌論文] How Bad is the Freedom to Flood-It?2019

    • 著者名/発表者名
      Belmonte Remy、Khosravian Ghadikolaei Mehdi、Kiyomi Masashi、Lampis Michael、Otachi Yota
    • 雑誌名

      Journal of Graph Algorithms and Applications

      巻: 23 ページ: 111~134

    • DOI

      10.7155/jgaa.00486

    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Independent Set Reconfiguration Parameterized by Modular-Width2019

    • 著者名/発表者名
      Remy Belmonte
    • 学会等名
      WG 2019
  • [学会発表] Token sliding on split graphs2019

    • 著者名/発表者名
      Remy Belmonte
    • 学会等名
      STACS 2019
    • 国際学会
  • [学会発表] Parameterized Complexity of Safe Set2019

    • 著者名/発表者名
      Ioannis Katsikarelis
    • 学会等名
      CIAC 2019
    • 国際学会

URL: 

公開日: 2019-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi