• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実施状況報告書

少数データで学習する深層学習のための効率的な学習サンプル生成に関する研究

研究課題

研究課題/領域番号 18K11495
研究機関中京大学

研究代表者

目加田 慶人  中京大学, 工学部, 教授 (00282377)

研究分担者 村瀬 洋  名古屋大学, 情報学研究科, 教授 (90362293)
道満 恵介  中京大学, 工学部, 講師 (90645748)
研究期間 (年度) 2018-04-01 – 2021-03-31
キーワード深層学習 / データ生成 / パターン認識
研究実績の概要

本研究の目的は,画像認識を対象とした深層学習において,用意できる学習サンプル数が限られているときのデータ生成効果を最大化する学習サンプル生成法を明らかにすることである.本年度の成果としては,CT画像から肝臓がん領域を検出するための学習画像生成があげられる.前年度において,見えの異なる2つの種類の病変画像を生成することで,辺縁にある病変と非辺縁にある病変を個別に生成し,これらを学習データに利用することで検出精度が向上することを示したが,これを国際会議に投稿し採択された.また,同様の技術を超音波画像からの腫瘍検出に適用したところ,学習データが少ないときにはGANにより病変生成をおこない学習データを増加させることが有効であることを確認し,学会にて報告した.また,料理画像に魅力度を付与するためには被験者実験が必要となるが,多数の画像に魅力度を付与することは非常に困難であるため,結果的に学習データが不足するという問題に対応して,2つの方法でこれらを解決することを試みた.一般に学習画像を増やすためには,幾何変換,フィルタ処理やノイズ付加などのデータ拡張が行われる.画像分類問題に対しては超高次元の特徴空間での変動が加わることで分類精度が向上するが,本研究課題のように回帰問題の場合には過度の変換により回帰精度が低下する恐れがある.そのため,対象の魅力度に影響を与えない範囲でのデータ拡張の大きさを実験的に定め,これによりデータを増やすことで回帰精度が向上することを確認した.また,画像特徴に加えて視線情報を付与することで回帰精度が向上することも確認した.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

医用画像のように学習データが増やしづらい対象にたいする研究成果が順調に積み重ねられている.また,写真の魅力度推定のような回帰問題への拡張においても,視線情報など画像外のデータを利用する方法の検討など,研究が順調に展開されている.これらに対して,国内外での研究発表も適切にできている.

今後の研究の推進方策

他の研究プロジェクトにより,十分な量の学習データが整備できた問題に対して,本研究が対象としている少数の学習データからのデータ拡張がそのまま有効に機能するのかなど,研究の範囲を広げながら多角的に検証を進める.

次年度使用額が生じた理由

他の研究予算にて深層学習用のGPU計算機を入手することが可能となったため,当該年度の予算を繰り越すこととなった.次年度予算と合わせて引き続き研究環境を整備する.

  • 研究成果

    (9件)

すべて 2020 2019

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (7件) (うち国際学会 2件) 図書 (1件)

  • [雑誌論文] Estimation of the Attractiveness of Food Photography Based on Image Features2019

    • 著者名/発表者名
      TAKAHASHI Kazuma、HATTORI Tatsumi、DOMAN Keisuke、KAWANISHI Yasutomo、HIRAYAMA Takatsugu、IDE Ichiro、DEGUCHI Daisuke、MURASE Hiroshi
    • 雑誌名

      IEICE Transactions on Information and Systems

      巻: E102.D ページ: 1590~1593

    • DOI

      10.1587/transinf.2018EDL8219

    • 査読あり / 国際共著
  • [学会発表] A study on liver tumor detection from an ultrasound image using deep learning2020

    • 著者名/発表者名
      Takahiro Nakashima,Issei Tsutsumi,Hiroki Takami,Keisuke Doman,Yoshito Mekada,Naoshi Nishida,Masatoshi Kud
    • 学会等名
      Proc. of Joint Int. Workshop on Advanced Image Technology 2020
    • 国際学会
  • [学会発表] Application of data augmentation for accurate attractiveness estimation for food photography2019

    • 著者名/発表者名
      Tatsumi Hattori,Keisuke Doman,Ichiro Ide,Yoshito Mekada
    • 学会等名
      Proc. of 11th Workshop on Multimedia for Cooking and Eating Activities
    • 国際学会
  • [学会発表] A study on a data augmentation framework for accurate food attractiveness estimation2019

    • 著者名/発表者名
      服部 竜実,道満 恵介,井手 一郎,目加田 慶人
    • 学会等名
      電子情報通信学会 魅力工学研究会シンポジウム2019
  • [学会発表] 視線情報を考慮した料理写真の魅力度推定手法に関する検討2019

    • 著者名/発表者名
      宮崎 光明,服部 竜実,道満 恵介,平山 高嗣,川西 康友,井手 一郎,目加田 慶人
    • 学会等名
      電子情報通信学会 魅力工学研究会シンポジウム2019
  • [学会発表] 深層学習による超音波画像からの肝腫瘍検出に関する初期的検討2019

    • 著者名/発表者名
      堤 一晴,中島 崇博,道満 恵介,目加田 慶人,西田 直生志,工藤 正敏
    • 学会等名
      第38回日本医用画像工学会大会(JAMIT)
  • [学会発表] 転移性肝がん検出のためのConditional GANによる学習画像生成2019

    • 著者名/発表者名
      池田 裕亮,道満 恵介,目加田 慶人,縄野 繁
    • 学会等名
      第38回日本医用画像工学会大会(JAMIT)
  • [学会発表] 超音波画像診断のための深層学習を用いた腫瘍判別2019

    • 著者名/発表者名
      堤 一晴,道満 恵介,目加田 慶人,西田 直生志,工藤 正敏
    • 学会等名
      2019年度日本生体医工学会東海支部学術集会
  • [図書] Deep Learning in Medical Image Analysis: Challenges and Applications,Gobert Lee and Hiroshi Fujita eds.(分担執筆)2020

    • 著者名/発表者名
      Keisuke Doman,Takaaki Konishi,Yoshito Mekada
    • 総ページ数
      176
    • 出版者
      Springer

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi