• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

他施設レジストリに基づく院内救急体制の質改善と早期警告スコアの開発

研究課題

研究課題/領域番号 18K16548
研究機関聖マリアンナ医科大学

研究代表者

内藤 貴基  聖マリアンナ医科大学, 医学部, 助教 (30814628)

研究期間 (年度) 2018-04-01 – 2024-03-31
キーワード院内急変 / Rapid Response System / 機械学習 / 早期警告スコア
研究実績の概要

院内急変予測モデルはさまざまな状況で活用されるが、2021年までの本研究で、著明に低いrapid response system(RRS)の起動率が明らかになり、我が国の院内救急体制の脆弱性が明らかになった。その解決策として早期警告スコアの導入によるtrack and trrigerシステムの構築に期待されているが我が国での有用性についてはエビデンスは限定的であった。2021年の本研究の成果として、我が国でも早期警告スコア(national early warning score: NEWS)が院内の患者リスクの層別化に有用であることが示された。
しかし、RRSの起動数が増え、病状変化をきたす患者への早期介入が進むと、その分対応チームへの負担が増加する。その対策として診療看護師など医師以外の職種での対応が増加が想定されるが、その際の対応が十分であるか評価することは困難であった。そこで、RRS起動後の急変リスク予測モデルを作成することで、対応チームの判断をサポートするシステムの構築が可能となる。
そこでRRS後の院内急変予測モデル構築の研究計画を作成し、2022年2月に承認を得て、モデルの作成をおこなった。モデルの作成は終了しており、従来用いられているNEWSよりも高い精度を示した(AUC 0.696 vs 0.798)。現在論文の作成および学会発表の準備を進めている。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

データ処理および機械学習モデルの作成は終了している。

今後の研究の推進方策

現在論文作成および学会発表準備を進めている。2023年のヨーロッパ集中治療医学会での発表、論文掲載を予定している。

次年度使用額が生じた理由

データ処理および機械学習モデルの作成に時間を要してしまい、研究成果の発表まで到達できなかった。
次年度は、研究成果についてヨーロッパ集中治療医学会での発表および論文投稿を行う予定であるため、旅費、学会参加費、論文投稿費に使用予定である。

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi