高頻度取引市場の時系列データを(拡張された)確率微分方程式(以下SDE)で記述されているものであると見做してその高次反復積分の和への展開の係数として現われる確率変数で市場を調べるものであると一般化できる。この一般化は人工知能の中の所謂深層学習と整合性が高い。ファイナンス理論は市場データからヘッジ戦略を記述するSDEを発見するものと見做すことができるが, 深層学習の深層に相当する部分はこのSDEを記述するベクトル場を時間方向に並べることに相当するからである。この知見により、今後のファイナンス理論の研究に深層学習の理論を取り込む手段の有力な候補が発見された。
|