• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実績報告書

衛星観測を活用したデータ駆動型の水文季節予報手法の開発

研究課題

研究課題/領域番号 18KK0117
研究機関東京大学

研究代表者

金 炯俊  東京大学, 生産技術研究所, 特任准教授 (70635218)

研究分担者 渡部 哲史  九州大学, 比較社会文化研究院, 准教授 (20633845)
内海 信幸  東京工業大学, 環境・社会理工学院, 准教授 (60594752)
研究期間 (年度) 2018-10-09 – 2024-03-31
キーワードPhysics-informed AI / TWS / Data-driven Forecast / Satellite remote sensing
研究実績の概要

This international collaborative project aimed to develop a data-driven inference framework to predict flood and drought events at lead times ranging up to 6 months to the present. The project involved a partnership between the University of Tokyo (U-Tokyo) in Japan and the National Aeronautics and Space Administration (NASA) in the United States. The NASA team contributed in-depth knowledge and expertise on satellite observations, specifically elucidating the memory impact of local water storage, such as terrestrial water storage and river water height as a delayed local response. The U-Tokyo team focused on elucidating the teleconnection mechanisms between global-scale forcings. They simulated these global and local lagged relations using a physics-informed deep learning approach developed by the U-Tokyo team. Newly proposed deep learning approach proved effective in simulating the complex relationships between global forcings and local hydrology. During the project period, the team faced two unexpected and severe situations: 1) the COVID-19 pandemic, which disrupted international collaboration, and 2) the relocation of the international counterpart from NASA to the University of Saskatchewan, which required adjustments in communication and coordination. Nenvertheless, the project successfully developed a data-driven framework to predict flood and drought. The framework leverages satellite observations, advanced modeling techniques, and international collaboration to provide valuable insights for disaster risk management and water resource planning.

  • 研究成果

    (7件)

すべて 2023 その他

すべて 国際共同研究 (3件) 雑誌論文 (4件)

  • [国際共同研究] NASA(米国)

    • 国名
      米国
    • 外国機関名
      NASA
  • [国際共同研究] University of Saskatchewan(カナダ)

    • 国名
      カナダ
    • 外国機関名
      University of Saskatchewan
  • [国際共同研究] KAIST(韓国)

    • 国名
      韓国
    • 外国機関名
      KAIST
  • [雑誌論文] Anthropogenic warming induced intensification of summer monsoon frontal precipitation over East Asia2023

    • 著者名/発表者名
      Moon Suyeon、Utsumi Nobuyuki、Jeong Jee-Hoon、Yoon Jin-Ho、Wang S.-Y. Simon、Shiogama Hideo、Kim Hyungjun
    • 雑誌名

      Science Advances

      巻: 9 ページ: -

    • DOI

      10.1126/sciadv.adh4195

  • [雑誌論文] Calibrating global hydrological models with GRACE TWS: does river storage matter?2023

    • 著者名/発表者名
      Trautmann Tina、Koirala Sujan、Guentner Andreas、Kim Hyungjun、Jung Martin
    • 雑誌名

      Environmental Research Communications

      巻: 5 ページ: 081005~081005

    • DOI

      10.1088/2515-7620/acece5

  • [雑誌論文] Irrigation in the Earth system2023

    • 著者名/発表者名
      McDermid Sonali、(30/38) Hyungjun Kim, et al.
    • 雑誌名

      Nature Reviews Earth & Environment

      巻: 4 ページ: 435~453

    • DOI

      10.1038/s43017-023-00438-5

  • [雑誌論文] Multi‐Task Learning for Simultaneous Retrievals of Passive Microwave Precipitation Estimates and Rain/No‐Rain Classification2023

    • 著者名/発表者名
      Bannai Takumi、Xu Haoyang、Utsumi Nobuyuki、Koo Eunho、Lu Keming、Kim Hyungjun
    • 雑誌名

      Geophysical Research Letters

      巻: 50 ページ: -

    • DOI

      10.1029/2022GL102283

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi