本年度は二つの課題の内、主に場の理論の計算手法の開発に注力した。格子色力学の理論計算において、クォーク・反クォークの生成消滅が2回以上起きている量子振幅(非結合ループ)の計算は統計的ノイズが大きく困難であるごとが知られているが、この振幅が計算可能になると、カイラル量子異常(η'中間子)、真空との混合(シグマ中間子)、陽子中のストレンジクォーク成分など物理的に非常に興味深い現象を第一原理からの解明することが可能になり、その計算手法の研究開発が求められている分野内で共通の課題である。 強いCP問題と呼ばれる、陽子、中性子の電気双極子がどうして不自然に小さいのかという素粒子物理の長年の謎に係わる計算にはQCD真空の位相的な指数(トポロジー電荷、インスタントン数)と核子中の電気分極の2者の相関を精度良く求める必要がある。この計算を実行する上で現在まで良く用いられていた方法としては、QCDの真空の配位を生成し、その上で位相的な指数と核子の両者を測りその間の相関を求めることであったが、計算結果の統計精度が余り良くない現状である。新しい計算方法として、「純虚数に解析接続した真空角度」という考えを導入することにより位相指数が偏ったQCD配位を生成し、その上で核子の電気分極を測ることにより両者の相関を求めるというアイディアを試した。これは最初に述べた、非結合ループ間の相関を計算する新たな手法である。計画したとおり位相的指数の偏ったQCD配位を作ることに成功し、その上で電気分極を統計的誤差をコントロトルしながら測ることが出来た。
|