• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

Deligne-Lusztig 多様体と Fargues-Fontaine 曲線

研究課題

研究課題/領域番号 19F19022
研究機関東京大学

研究代表者

今井 直毅  東京大学, 大学院数理科学研究科, 准教授 (90597775)

研究分担者 GAISIN ILDAR  東京大学, 大学院数理科学研究科, 外国人特別研究員
研究期間 (年度) 2019-04-25 – 2021-03-31
キーワードCohomology
研究実績の概要

Let f: X -> Y be a proper smooth morphism of p-adic formal schemes over O_C (the ring of integers of a complete algebraically closed non-Archimedean extension of Qp). Recently Bhatt-Morrow-Scholze constructed a so called A_inf-cohomology (over a point) which captures various p-adic cohomology theories (in the process reproving the important crystalline conjecture). The current project jwith Teruhisa Koshikawa has two objectives. Firstly, we construct a relative version of A_inf-cohomology for f and relate it to the theory of coefficients recently developed by Morrow-Tsuji. Secondly, we compare this relative A_inf-cohomology with the pushforward of the structural sheaf on the prismatic site. The main theorem of the original A_inf-cohomology paper by Bhatt-Morrow-Scholze is the so called absolute crystalline comparison isomorphism. However, now with the intervention of the prismatic site (by Bhatt-Scholze), the comparison with the latter should be considered the main task. The principal novelty for constructing the relative A_inf-cohomology is to use an idea recently developed by Abbes-Gros in their recent work on the relative Hodge-Tate spectral sequence. The idea to pushforward to a fiber product of topoi containing the proetale and etale sites of X and Y. Currently we have proved the relative p-adic etale comparison and completed local calculations via Faltings’ almost purity.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We was able to construct a relative version of A_inf-cohomology and relate it to the theory of coefficients recently developed by Morrow-Tsuji. Further, we was able to compare this relative A_inf-cohomology with the pushforward of the structural sheaf on the prismatic site. Therefore the research is going well as expected.

今後の研究の推進方策

In recent work of Colmez-Dospinescu-Niziol, the authors calculate the integral p-adic etale cohomology of Drinfeld symmetric space. It is therefore natural to now understand the integral p-adic etale cohomology of the tower sitting above Drinfeld space. In this work, we consider just the first level appearing in the tower. This is a wildly ramified covering of Drinfeld upper half space. In previous work, Haoran Wang calculated the etale cohomology of this covering with rational l-adic coefficients. We plan to use the strategy developed by Haoran Wang, in particular using the (formal) open affinoids that he constructed and combining this with the strategy of Colmez-Dospinescu-Niziol.

  • 研究成果

    (3件)

すべて 2020 2019

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (2件) (うち国際学会 2件、 招待講演 2件)

  • [雑誌論文] Constructibility and Reflexivity in Non-Archimedean geometry2019

    • 著者名/発表者名
      Ildar Gaisin, John Welliaveetil
    • 雑誌名

      International Mathematics Research Notices

      巻: NA ページ: NA

    • DOI

      https://doi.org/10.1093/imrn/rnz247

    • 査読あり
  • [学会発表] The Fargues-Fontaine curve2020

    • 著者名/発表者名
      Ildar Gaisin
    • 学会等名
      Equivariant Stable Homotopy Theory and p-adic Hodge Theory
    • 国際学会 / 招待講演
  • [学会発表] Fargues' conjecture in GL_2-case2019

    • 著者名/発表者名
      Ildar Gaisin
    • 学会等名
      Perfectoid Spaces
    • 国際学会 / 招待講演

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi