• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実績報告書

強縦断的な生体医学信号の深層学習と健康関連の人工知能応用

研究課題

研究課題/領域番号 19F19081
研究機関東京大学

研究代表者

山本 義春  東京大学, 大学院教育学研究科(教育学部), 教授 (60251427)

研究分担者 QIAN KUN  東京大学, 教育学研究科(研究院), 外国人特別研究員
研究期間 (年度) 2019-10-11 – 2022-03-31
キーワードSignal Processing / Internet of Things / Artificial Intelligence
研究実績の概要

In summary, we have achieved plenty of milestones during the FY2020. We introduced a novel paradigm that utilises the usage recorded data from smart appliances to analyse the elderly’s behaviour in a long duration. This non-intrusive approach can facilitate the combination of artificial intelligence and internet of things (AIoT) for making a more convenient and flexible life for the ageing population. This work was published online by the top journal IEEE Internet of Things Journal (with an impact factor of 9.936). Moreover, we systematically summarised the scenarios, data modalities, and methodologies for AIoT-enabled applications for the specific elderly group. We also indicated the benchmarks and limitations of the existing studies and gave our perspectives on future work. This article has been accepted and will be published by the prestigious journal IEEE Signal Processing Magazine (with an impact factor of 11.350). A comprehensive review was done and invited to be published by the IEEE Journal of Biomedical and Health Informatics (with an impact factor of 5.223). This review article concluded the state-of-the-art of audio-based methods for localising the snore site in the past three decades. In addition, we formed a team to collaboratively propose a novel approach for monitoring the confirmed COVID-19 patients on their sleep quality, fatigue, and anxiety. The relevant studies were published in the IEEE Internet of Things Journal and ISCA INTERSPEECH conference.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We are now working towards transferring our methods to more general purposes, e.g., monitoring the drowsiness of drivers via the spontaneous physical activity data. We are also investigating the advanced data augmentation methods for coping with the data scarcity challenge among the several applications, e.g., the audio-based COVID-19 diagnosis problem. Furthermore, we are exploring the optimal time-frequency methods for analysing the body sound signals. Some preliminary results have already been achieved in recent study on heart sound analysis work.

今後の研究の推進方策

We will continuously collect more human behaviour data in near future, which may include multiple modalities, e.g., audio, video, and wearable sensors. We also want to build an explainable AI system for understanding the human behaviour in a high-level paradigm, which can benefit improving the model’s generalisation for multiple tasks.

  • 研究成果

    (10件)

すべて 2021 2020

すべて 雑誌論文 (10件) (うち国際共著 10件、 査読あり 10件、 オープンアクセス 1件)

  • [雑誌論文] Can Machine Learning Assist Locating the Excitation of Snore Sound? A Review2021

    • 著者名/発表者名
      Qian Kun、Janott Christoph、Schmitt Maximilian、Zhang Zixing、Heiser Clemens、Hemmert Werner、Yamamoto Yoshiharu、Schuller Bjorn W.
    • 雑誌名

      IEEE Journal of Biomedical and Health Informatics

      巻: 25 ページ: 1233~1246

    • DOI

      10.1109/JBHI.2020.3012666

    • 査読あり / 国際共著
  • [雑誌論文] COVID-19 and Computer Audition: An Overview on What Speech & Sound Analysis Could Contribute in the SARS-CoV-2 Corona Crisis2021

    • 著者名/発表者名
      Schuller Bjorn W.、Schuller Dagmar M.、Qian Kun、Liu Juan、Zheng Huaiyuan、Li Xiao
    • 雑誌名

      Frontiers in Digital Health

      巻: 3 ページ: -

    • DOI

      10.3389/fdgth.2021.564906

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Computer Audition for Fighting the SARS-CoV-2 Corona Crisis ? Introducing the Multi-task Speech Corpus for COVID-192021

    • 著者名/発表者名
      Qian Kun、Schmitt Maximilian、Zheng Huaiyuan、Koike Tomoya、Han Jing、Liu Juan、Ji Wei、Duan Junjun、Song Meishu、Yang Zijiang、Ren Zhao、Liu Shuo、Zhang Zixing、Yamamoto Yoshiharu、Schuller Bjorn W.
    • 雑誌名

      IEEE Internet of Things Journal

      巻: - ページ: 1~1

    • DOI

      10.1109/JIOT.2021.3067605

    • 査読あり / 国際共著
  • [雑誌論文] Artificial Intelligence Internet of Things for the Elderly: From Assisted Living to Health-Care Monitoring.2021

    • 著者名/発表者名
      Kun Qian, Zixing Zhang, Yoshiharu Yamamoto, and Bjoern W. Schuller.
    • 雑誌名

      IEEE Signal Processing Magazine

      巻: 38 ページ: 1~11

    • 査読あり / 国際共著
  • [雑誌論文] Recent Advances in Computer Audition for Diagnosing COVID-19: An Overview.2021

    • 著者名/発表者名
      Kun Qian, Bjorn W. Schuller, and Yoshiharu Yamamoto
    • 雑誌名

      Proceedings of LifeTech

      巻: - ページ: 185~186

    • 査読あり / 国際共著
  • [雑誌論文] Predicting Group Work Performance from Physical Handwriting Features in a Smart English Classroom.2021

    • 著者名/発表者名
      Meishu Song, Kun Qian, Bin Chen, Keiju Okabayashi, Emilia Parada-Cabaleiro, Zijiang Yang, Shuo Liu, Kazumasa Togami, Ichiro Hidaka, Yueheng Wang, Bjorn W. Schuller, and Yoshiharu Yamamoto.
    • 雑誌名

      Proceedings of ICDSP

      巻: - ページ: 1~5

    • 査読あり / 国際共著
  • [雑誌論文] Can Appliances Understand the Behaviour of Elderly via Machine Learning? A Feasibility Study2020

    • 著者名/発表者名
      Qian Kun、Koike Tomoya、Yoshiuchi Kazuhiro、Schuller Bjorn W.、Yamamoto Yoshiharu
    • 雑誌名

      IEEE Internet of Things Journal

      巻: - ページ: 1~1

    • DOI

      10.1109/JIOT.2020.3045009

    • 査読あり / 国際共著
  • [雑誌論文] Learning Higher Representations from Pre-Trained Deep Models with Data Augmentation for the COMPARE 2020 Challenge Mask Task2020

    • 著者名/発表者名
      Koike Tomoya、Qian Kun、Schuller Bjorn W.、Yamamoto Yoshiharu
    • 雑誌名

      Proceedings of INTERSPEECH

      巻: - ページ: 2047~2051

    • DOI

      10.21437/Interspeech.2020-1552

    • 査読あり / 国際共著
  • [雑誌論文] Learning Higher Representations from Bioacoustics: A Sequence-to-Sequence Deep Learning Approach for Bird Sound Classification2020

    • 著者名/発表者名
      Qiao Yu、Qian Kun、Zhao Ziping
    • 雑誌名

      Proceedings of ICONIP

      巻: - ページ: 130~138

    • DOI

      10.1007/978-3-030-63823-8_16

    • 査読あり / 国際共著
  • [雑誌論文] An Early Study on Intelligent Analysis of Speech Under COVID-19: Severity, Sleep Quality, Fatigue, and Anxiety2020

    • 著者名/発表者名
      Han Jing、Qian Kun、Song Meishu、Yang Zijiang、Ren Zhao、Liu Shuo、Liu Juan、Zheng Huaiyuan、Ji Wei、Koike Tomoya、Li Xiao、Zhang Zixing、Yamamoto Yoshiharu、Schuller Bj?rn W.
    • 雑誌名

      Proceedings of INTERSPEECH

      巻: - ページ: 4946~4950

    • DOI

      10.21437/Interspeech.2020-2223

    • 査読あり / 国際共著

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi