• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

ソーシャルビッグデータに基づく影響最大化アルゴリズムと推奨応用に関する研究

研究課題

研究課題/領域番号 19F19704
研究機関東京工科大学

研究代表者

大山 恭弘  東京工科大学, 工学部, 教授 (00233289)

研究分担者 WANG FENG  東京工科大学, 工学部, 外国人特別研究員
研究期間 (年度) 2019-04-25 – 2021-03-31
キーワードInfluence Maximization / Recommendation Algorithm / Social Big Data / User Influence Eval. / Network Analysis
研究実績の概要

We devised a preprocess method for user influence information in social big data. First, we presented methods to identify the relevant influence information including user social relationships, hobbies, influence relationships, etc. Then, we designed flexible and efficient multi-dimensional influence information collection models and methods. Finally, we proposed an implicit representation learning approach for user influence features to improve the performance of influence measurement.
We also devised an influence deep learning (IDL) model to learn users’ latent feature representation for predicting influence spread. The IDL model is fully data-driven, and it uses sampling subnetworks as inputs to deep neural networks for learning users’ latent vector representation.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The study is progressed as schedule. We prepared the study very smoothly. So, It made it possible for me to start and focus on my study. As a result, I submitted a paper to a very famous international conference and successfully presented my paper.

今後の研究の推進方策

Influence maximization algorithm (2020/04~2020/10)
(1) To establish a preprocess method for user influence information in online social networks. (2) To propose a user influence evaluation approach based on the social big data. Then, we plan to devise a novel influence maximization algorithm to find a balance point between effectiveness and efficiency.

Recommendation algorithm based on the top-k influential nodes (2020/10~2021/03)
(1) To propose a new method of analyzing the important role of influential users in the process of education resources recommendation. (2) To devise a group recommendation algorithm of education resources based on the top-k influential nodes. (3) To attempt to develop algorithms for the seed set detection and resource recommendation.

  • 研究成果

    (2件)

すべて 2019 その他

すべて 国際共同研究 (1件) 学会発表 (1件) (うち国際学会 1件)

  • [国際共同研究] China University of of Geosciences(中国)

    • 国名
      中国
    • 外国機関名
      China University of of Geosciences
  • [学会発表] Deep-learning-based Identification of Influential Spreaders in Online Social Networks2019

    • 著者名/発表者名
      Feng Wang, Jinhua She, Yasuhiro Ohyama, and Min Wu
    • 学会等名
      IEEE 45th Annual Conference of the Industrial Electronics Society (IECON 2019)
    • 国際学会

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi