昨年度の研究成果に基づき、主としてZagierの2-3-2公式、オイラー和に関する広瀬稔氏との共同研究を進めた。2-3-2公式に関しては、昨年度反復ベータ積分を用いた多変数化が得られたため、今年度は反復ベータ積分等式から導かれる様々な帰結について研究を行うとともに、並行して反復ベータ積分等式に関する結果をまとめた論文の執筆に力を注いだ。また論文にまとめる中で結果を整理し、いくつかの結果をより一般的で整理された形に定式化し直すことができた。例えば、中央二項係数を含む級数とHyperlogarithmの特殊値を関係付けるある等式群は、反復ベータ積分の原点や無限遠点での級数展開の特別な場合とみなせるが、今回、それをより広い範疇のパラメータに対して成立する形に定式化し直すことができた。また、反復ベータ積分が満たす微分方程式についても当初は特定の変数に関する常微分方程式だけを考えていたが、より自然な全微分方程式形を得ることができた。さらに、応用に関しても、Zagierの2-3-2公式などを導くパラメータの値が1/2の場合以外に、パラメータの値が1/3の場合を考察し、射影直線から正四面体群の対称性を持つ14点を抜いた空間の上の反復積分に関する結果を導いた。オイラー和に関する研究では、昨年度得られたオイラー和のドリーニュ型基底に関する結果をまとめた論文の執筆にあたった。論文は二部構成で、第一部ではオイラー和に関する昨年度の結果をまとめ、第二部では結果をモチビックオイラー和に持ち上げるため、モチビック合流関係式に関する一般的な枠組みを整理した。第二部では、主定理の証明に多数のステップが必要であったが、長い時間をかけ論文を完成させることができた。また、広瀬実・関真一朗両氏との共同研究で二重大野関係式の結合和を用いた証明を得、その結果をまとめた論文を完成させた。
|