• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実績報告書

ローレンツメビウス幾何とローレンツ部分多様体の変換理論

研究課題

研究課題/領域番号 19J10679
研究機関神戸大学

研究代表者

CHO JOSEPH  神戸大学, 理学研究科, 特別研究員(PD)

研究期間 (年度) 2019-04-25 – 2021-03-31
キーワードオメガ曲面 / 変形KdV方程式 / ダルブー変換
研究実績の概要

本年度はミンコフスキー空間形内の空間的双等温曲面の変換理論の理解を目標とした. この目標に関して得られた主な成果は以下の通りである.
1. ミンコフスキー空間形内の空間的双等温曲面は「リー球面幾何」を用いてユークリッド空間形内の双等温曲面と一緒に扱うことが出来ることが知られている. 一方、リー球面幾何は双等温曲面を含むもっと一般的な曲面のクラスである「オメガ曲面」の考察に相応しい幾何であることも知られている. Burstall氏、Hertrich-Jeromin氏、 Pember氏、 Rossman氏と協力し、リー球面幾何を使って離散オメガ曲面の定義を変換理論と可換律を用いて行った.
2. 曲面の変換理論と同様に曲線にも変換理論が存在する事が知られていて、曲線の変換理論と可換律は半離散曲面と密接な関係がある. 従って、「半離散双等温曲面」の生成するポララーゼーション付き曲線の「ダルブー変換」に着目し、Rossman氏、瀬野智也氏と協力してポララーゼーション付きの離散平面曲線の滑らかな「ダルブー変形」を新たに定義した. この定義によってダルブー変形と「半離散変形KdV方程式」や「離散変形KdV方程式」との関係を明らかにした.

現在までの達成度 (段落)

令和2年度が最終年度であるため、記入しない。

今後の研究の推進方策

令和2年度が最終年度であるため、記入しない。

  • 研究成果

    (1件)

すべて 2020

すべて 学会発表 (1件) (うち国際学会 1件)

  • [学会発表] Shape generation via discrete p-holomorphic functions2020

    • 著者名/発表者名
      J. Cho
    • 学会等名
      Maths Meets Arts
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi