• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

Tutte多項式とそのアレンジメント理論への応用

研究課題

研究課題/領域番号 19J12024
研究機関北海道大学

研究代表者

TRAN NHAT TAN  北海道大学, 理学院, 特別研究員(DC2)

研究期間 (年度) 2019-04-25 – 2021-03-31
キーワードhyperplane arrangement / quasi-polynomial / root system / matroid / Tutte polynomial
研究実績の概要

1. With M. Yoshinaga (Hokkaido) and A. U. Ashraf (Western Ontario), we introduce the notion of A-Eulerian polynomial producing an Eulerian-like polynomial for any subarrangement of a Weyl arrangement A. This polynomial describes how the characteristic quasi-polynomial of a certain class of subarrangements containing ideal subarrangements of A can be expressed in terms of the Ehrhart quasi-polynomial of the fundamental alcove.

2. After obtaining my PhD, I continue to exploit the Tutte-related polynomials of matroids with multiplicity. I have recently found new interpretations of the multivariate Tutte polynomial in terms of the expectation of functions of random restriction and contraction.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

1. Finding subarrangements of a Weyl arrangement that have the characteristic quasi-polynomials given by the Ehrhart quasi-polynomials of rational polytopes arising from the corresponding root system is a wide open problem. Our result is a good progress towards it. Interestingly, the ideal subarrangements belong to the computable list.

2. The results reveal a connection between Tutte polynomials of matroids with non-trivial multiplicity (e.g., arithmetic Tutte and G-Tutte polynomials) and probability theory. This is highly expected to generate considerable interest to the community (I was already informed by some researchers).

今後の研究の推進方策

With the main focus on the G-Tutte polynomials and G-arrangements, I plan to work on the following problems:

Problem 1 (Topology). Is every abelian Lie group arrangement minimal, i.e., its complement has the homotopy type of a CW-complex in which the number of k-cells equals the k-th Betti number? I am working with M. Yoshinaga (Hokkaido) and E. Delucchi (Fribourg) on this problem. I am invited to take part in a research period by Delucchi at U. Fribourg, Switzerland over the period May-July, 2020.

Problem 2 (Matroid theory). What matroidal structure can the G-Tutte polynomial be associated with? I am recently working on this problem with I. Martino (KTH Stockholm). I am invited by him to give a talk at the conference Tropical and Algebraic Encounter at U. Catania, Italy in December 2020.

  • 研究成果

    (10件)

すべて 2019 その他

すべて 雑誌論文 (3件) (うち国際共著 3件、 査読あり 3件) 学会発表 (6件) (うち国際学会 5件、 招待講演 4件) 備考 (1件)

  • [雑誌論文] Combinatorics of certain abelian Lie group arrangements and chromatic quasi-polynomials2019

    • 著者名/発表者名
      Tan Nhat Tran and Masahiko Yoshinaga
    • 雑誌名

      Journal of Combinatorial Theory, Series A

      巻: 165 ページ: 258-272

    • DOI

      https://doi.org/10.1016/j.jcta.2019.02.003

    • 査読あり / 国際共著
  • [雑誌論文] Characteristic quasi-polynomials of ideals and signed graphs of classical root systems2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 雑誌名

      European Journal of Combinatorics

      巻: 79 ページ: 179-192

    • DOI

      https://doi.org/ 10.1016/j.ejc.2019.03.001

    • 査読あり / 国際共著
  • [雑誌論文] $G$-Tutte polynomials and abelian Lie group arrangements2019

    • 著者名/発表者名
      Ye Liu, Tan Nhat Tran and Masahiko Yoshinaga
    • 雑誌名

      International Mathematics Research Notices

      巻: to appear ページ: to appear

    • DOI

      https://doi.org/10.1093/imrn/rnz092

    • 査読あり / 国際共著
  • [学会発表] On $A_1^2$ restrictions of Weyl arrangements (poster)2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 学会等名
      Hyperplane Arrangements and Singularities (Hyper-JARCS)
    • 国際学会
  • [学会発表] Eulerian polynomial: A link between characteristic and Ehrhart quasi-polynomials (oral)2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 学会等名
      Hyperplane Arrangements, JCCA - DMIA - SGT
    • 招待講演
  • [学会発表] Positivity of the coefficients of $G$-Tutte polynomials (oral)2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 学会等名
      Recent advances in matroids and Tutte polynomials, Hokkaido Summer Institute
    • 国際学会
  • [学会発表] Eulerian polynomials for subarrangements of Weyl arrangements (oral)2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 学会等名
      Geometry and Analysis
    • 国際学会 / 招待講演
  • [学会発表] Positivity of the coefficients of $G$-Tutte polynomials (oral)2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 学会等名
      New developments in matroid theory, SIAM Conference on Applied Algebraic Geometry
    • 国際学会 / 招待講演
  • [学会発表] The exponents of $A_1^2$ restrictions of Weyl arrangements and Ehrhart theory (oral)2019

    • 著者名/発表者名
      Tan Nhat Tran
    • 学会等名
      Arrangements at Western
    • 国際学会 / 招待講演
  • [備考] Personal homepage

    • URL

      https://sites.google.com/view/trannhattan/home

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi