• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実績報告書

大気歪み画像モデルを組み込んだ深層学習によるリモートセンシング画像の画質改善

研究課題

研究課題/領域番号 19J13820
研究機関立命館大学

研究代表者

LI YINHAO  立命館大学, 情報理工学研究科, 特別研究員(DC2)

研究期間 (年度) 2019-04-25 – 2021-03-31
キーワードImage processing / Artificial intelligence
研究実績の概要

The purpose of this research is to enhance the quality of remote sensing images using deep 3D convolutional neural networks incorporated with an atmospherically distorted image model.
In the first year, my research was mainly about the proposal and improvement of new technologies and methods.For the improvement of the image quality of large-size and high-dimensional images, based on the very hot artificial intelligence (AI) technology in recent years, I have proposed a lightweight deep learning method.
This method not only can maintain or exceed the existing methods in accuracy, but also has a faster processing speed and lower hardware requirements for saving the model, so it is more suitable for practical applications than traditional methods.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

So far, the progress of the research is basically in line with the original plan. I studied and referred to various deep learning methods in recent years, and then proposed and improved my original model. From the results, my method outperforms state-of-the-art methods in both accuracy and speed.
In addition, I have published or expected to publish three papers. The first one is about an improved multi-frame super-resolution method which has been published in the IET Image Processing. The second one is a proposed three-dimensional image processing model which has been submitted to a top international conference. The third one is my proposed lightweight super-resolution model which will be submitted to the IEEE Image Processing.

今後の研究の推進方策

In this year, I am going to apply the proposed network to detection, segmentation or classification in geographic information and geological analysis. I plan to use the proposed method to automatically judge whether a region has landslides or major disasters based on satellite images before and after the earthquake.
According to the results, parameters and network architecture will be adjusted to optimize the proposed model. Then, I am going to do evaluations to demonstrate my method outperforms conventional methods in quality enhancement of remote sensing images. Finally, I will publish my findings in top international conferences and journals before I graduate.

  • 研究成果

    (4件)

すべて 2020 2019 その他

すべて 国際共同研究 (1件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (1件) (うち国際学会 1件) 図書 (1件)

  • [国際共同研究] 浙江大学(中国)

    • 国名
      中国
    • 外国機関名
      浙江大学
  • [雑誌論文] Novel image restoration method based on multi-frame super-resolution for atmospherically distorted images2020

    • 著者名/発表者名
      Li Yinhao、Ogawa Katsuhisa、Iwamoto Yutaro、Chen Yen-Wei
    • 雑誌名

      IET Image Processing

      巻: 14 ページ: 168~175

    • DOI

      10.1049/iet-ipr.2019.0319

    • 査読あり / 国際共著
  • [学会発表] A 3D Shrinking-and-Expanding Module with Channel Attention for Efficient Deep Learning-Based Super-Resolution2020

    • 著者名/発表者名
      Yinhao Li, Yutaro Iwamoto, Yen-Wei Chen
    • 学会等名
      KES International Conference on Innovation in Medicine and Healthcare
    • 国際学会
  • [図書] Medical Image Enhancement Using Deep Learning (Deep Learning in Healthcare2019

    • 著者名/発表者名
      Yinhao Li, Yutaro Iwamoto, Yen-Wei Chen
    • 総ページ数
      218
    • 出版者
      Springer

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi