• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実績報告書

IoT機器向けの軽量化暗号実装技術とユーザ生体継続認証への応用

研究課題

研究課題/領域番号 19J15225
研究機関会津大学

研究代表者

ZHOU LU  会津大学, コンピュータ理工学研究科, 特別研究員(PD)

研究期間 (年度) 2019-04-25 – 2021-03-31
キーワードsecure authentication / support vector machine / fuzzy rough sets theory
研究実績の概要

In this fiscal year, we combined vector machine algorithms with fuzzy rough sets theory in our secure user biometrics authentication, which is more secure than traditional FaceID and TouchID. Traditional core vector machine (CVM) and support vector machine (SVM) have some limitations when used for data classification, while the addition of fuzzy rough sets theory can dynamically adjust the degree of the membership function, optimizing the weight distribution of each feature, and further improving the classification accuracy.

We developed a new algorithm combined with SVM and fuzzy rough sets are used to train and identify malicious domain generated by domain generation algorithms combined SVM with fuzzy rough sets, using online and incremental algorithms to automatically identify and classify non-existent domains as benign or malicious. Experiments show that the algorithm can indeed achieve a high classification accuracy, reaching more than 99%.

We also develop a new algorithm combined with CVM and fuzzy rough sets used to train and identify users who login and authenticate through biometric and behavioral characteristics. Our application makes the medical cloud bring more convenience to share medical data within the same hospital or between different hospitals and more secure to unauthorized access. We obtain biological and behavioral characteristics from doctors' own gestures for training and classifying, to ensure that only authorized doctors can access patient data.

現在までの達成度 (段落)

令和2年度が最終年度であるため、記入しない。

今後の研究の推進方策

令和2年度が最終年度であるため、記入しない。

  • 研究成果

    (4件)

すべて 2021 2020

すべて 雑誌論文 (3件) 学会発表 (1件) (うち国際学会 1件)

  • [雑誌論文] ANCS: Automatic NXDomain Classification System Based on Incremental Fuzzy Rough Sets Machine Learning2021

    • 著者名/発表者名
      Fang Liming、Yun Xinyu、Yin Changchun、Ding Weiping、Zhou Lu、Liu Zhe、Su Chunhua
    • 雑誌名

      IEEE Transactions on Fuzzy Systems

      巻: 29 ページ: 742~756

    • DOI

      10.1109/tfuzz.2020.2965872

  • [雑誌論文] DO-RA: Data-oriented runtime attestation for IoT devices2020

    • 著者名/発表者名
      Kuang Boyu、Fu Anmin、Zhou Lu、Susilo Willy、Zhang Yuqing
    • 雑誌名

      Computers & Security

      巻: 97 ページ: 101945~101945

    • DOI

      10.1016/j.cose.2020.101945

  • [雑誌論文] Achieving reliable timestamp in the bitcoin platform2020

    • 著者名/発表者名
      Ma Guangkai、Ge Chunpeng、Zhou Lu
    • 雑誌名

      Peer-to-Peer Networking and Applications

      巻: 13 ページ: 2251~2259

    • DOI

      10.1007/s12083-020-00905-6

  • [学会発表] Lightweight Collaborative Authentication With Key Protection for Smart Electronic Health Record System2021

    • 著者名/発表者名
      Zhixin Zhao; Lu Zhou; Chunhua Su
    • 学会等名
      2021 IEEE Conference on Dependable and Secure Computing (DSC)
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi