今年度は人工細胞液滴の自発運動メカニズムを引き続き探求した.自発運動の駆動力の起源を明らかにするため,液滴と基盤の間に蛍光ビーズを配置し,アクチン流動から外部の基盤への力伝達を可視化するForce Transmission Microscopyを開発した.そして,アクチン流動が生み出す界面摩擦と液滴が受ける流体抵抗のバランスで運動速度が決まる理論モデルを構築し,運動速度の液滴サイズ依存性の実験結果を理論的に説明した.以上から,周囲環境を利用する非接着型運動の力学を明らかにした.
次に,人工細胞に拘束されたアクチン細胞骨格が織り成すパターン形成を探求した.実験では,収縮力の増加に伴いアクチン流動からリング状の波に転移する条件を見出した.この結果を説明するため,アクトミオシンの収縮現象を記述するアクティブ・ゲル理論のシミュレーションを構築した.理論解析から,アクチン流動から波への転移が収縮力の強さと重合速度によって決まることが示唆された.この予測を検証するため,収縮力活性とアクチン線維重合速度を変化する薬剤を加える分子摂動実験を行ったところ,理論予測の相図が実験で定性的に再現され,アクティブ・ゲル理論の妥当性を裏付けた.
さらに,アクチン線維と液滴界面の結合を強固にすると,液滴の中心を軸に回転する波が現れることを見出した.この回転波が現れる条件を解明するため,実験で回転波が発生する初期段階に注目したところ,膜との結合のためにアクチンが膜から剥がれるのに時間がかかる「時間遅れ」があることが示唆された.この実験結果を理論で再現するため,初期収縮の時間遅れをシミュレーションに実装した.理論解析の結果,初期収縮の時間遅れによってリング状の波が徐々に不安定化し,最終的に回転波が安定化した.以上から,アクティブ・ゲルが対称性を破ることで多彩な非平衡構造を生み出す新たな力学的機構を明らかにした.
|