本研究では,感音性難聴に対する未来医療に関連して,内耳蝸牛の機能を模倣した人工聴覚上皮の開発を目指してきた.蝸牛に備わる機械的および電気的な要素,すなわち基底膜の20-20k Hzにわたる周波数弁別能,外有毛細胞のナノ振動増幅および内有毛細胞の音/神経信号変換に着目し,バイオミメティクスとMicroelectromechanical systemsの融合による超高性能マイクロマシンの創製を進めている. 令和3年度は,動物実験用デバイスの大量安定生産を可能とする作製スキームを確立した.デバイスは,モルモットの蝸牛に埋め込み可能な寸法・構造で設計しており,圧電素子と神経刺激・振動制御を実現する2種類の電極を含むことに特徴がある.一方,圧電素子の材料には,PVDF-TrFEを使用しており,電極と異なる有機系材料であることから再現性のある接着が技術的隘路となり,デバイスの耐久性に改善点があった.そこで,接着層としてチタンを導入することで異種材料の強固な接着に成功し,歩留まりが1割以下から6割以上に改善された.作製したデバイスを加振し,ナノメートルスケールの振動を計測および解析した結果,空気中において157-277 kHzの周波数弁別能があることがわかった.また,共同研究先の大阪大学医学研究科にデバイスの埋め込み試験を依頼し,モルモットの蝸牛に埋め込み可能であることを確認している.モルモットの外耳から音刺激を与えたところ,アーティファクトではない振動が観測され,動物の体内に埋め込んだ場合も明らかに周波数弁別能が保持されることが示された. さらに,微小針型プローブおよび実体顕微鏡を導入し,ロックインアンプと組み合わせた電圧計測系を構築した.デバイスに対して音圧86.4 dB SPLを入力したところ,最大80.9 μVの出力電圧が計測され,動物実験に向けた基礎データの蓄積に成功している.
|