• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実績報告書

開発者個人の活動に対する深層学習によるソフトウェア不具合検出技法

研究課題

研究課題/領域番号 19J23477
研究機関京都工芸繊維大学

研究代表者

近藤 将成  京都工芸繊維大学, 工芸科学研究科, 特別研究員(DC1)

研究期間 (年度) 2019-04-25 – 2022-03-31
キーワードソフトウェア工学 / 不具合予測 / ソフトウェア開発者 / SZZアルゴリズム / データセットの質 / 予測モデル
研究実績の概要

今年度,開発者個人の活動を考慮した深層学習による不具合予測に関する研究の中で,昨年度に詳しく判明した,開発者個人ごとにモデルを作成する際のデータ不足の問題を解決するための調査に従事した.具体的には(1)データセットの質的向上,及び,(2)深層学習モデルに精度的に匹敵する予測モデルの構築を行った.(1)では,不具合予測において,予測対象のソフトウェア構成要素の不具合の有無を同定する手法の改善案について,既存研究に対する網羅的な調査を行い,それらの手法の実装,及び,評価を行った.つまり,予測モデルを学習する際に利用する正解データセットの質を向上させる手法の網羅的な調査である.結果,不具合を含むソフトウェア構成要素を正確に同定すること,及び,漏れなく同定するために必要な特徴についての知見を得た.結果を論文としてまとめて現在投稿している.本成果は,不具合を含むとされるソフトウェア構成要素を正しく同定することに寄与でき,少ないデータながらも不具合を含むソフトウェア構成要素の特徴を正確に捉える上で重要である.(2)に関しても,同じく少ないデータにおいて正確な不具合予測を行うための研究である.昨年度の結果から,深層学習モデルを構築することが不可能なほどデータ数が少ない開発者に対しては,深層学習以外のモデルを用いることを検討しており,そのための網羅的な予測モデルの評価実験を行っていた.その結果をまとめ現在論文として投稿している.本成果は,実際の開発現場では,データ数の問題で深層学習モデルの適用が不可能な場合があるという現実の開発の問題を解決する上で重要な貢献を行うものである.

現在までの達成度 (段落)

翌年度、交付申請を辞退するため、記入しない。

今後の研究の推進方策

翌年度、交付申請を辞退するため、記入しない。

  • 研究成果

    (3件)

すべて 2020

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (2件) (うち国際学会 2件)

  • [雑誌論文] Code cloning in smart contracts: a case study on verified contracts from the Ethereum blockchain platform2020

    • 著者名/発表者名
      Masanari Kondo, Gustavo A. Oliva, Zhen Ming (Jack) Jiang, Ahmed E. Hassan, Osamu Mizuno
    • 雑誌名

      Empirical Software Engineering

      巻: 25 ページ: 4617-4675

    • DOI

      10.1007/s10664-020-09852-5

    • 査読あり / 国際共著
  • [学会発表] An Empirical Study of Utilization of Imperative Modules in Ansible2020

    • 著者名/発表者名
      Shoma Kokuryo, Masanari Kondo and Osamu Mizuno
    • 学会等名
      Software Quality, Reliability, and Security (QRS)
    • 国際学会
  • [学会発表] Which Metrics Should Researchers Use to Collect Repositories: An Empirical Study2020

    • 著者名/発表者名
      Kai Yamamoto, Masanari Kondo, Kinari Nishiura and Osamu Mizuno
    • 学会等名
      Software Quality, Reliability, and Security (QRS)
    • 国際学会

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi