• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Feature visualizer and detector for scientific texts

研究課題

研究課題/領域番号 19K00850
研究機関会津大学

研究代表者

BLAKE John  会津大学, コンピュータ理工学部, 上級准教授 (80635954)

研究分担者 Mozgovoy Maxim  会津大学, コンピュータ理工学部, 准教授 (60571776)
研究期間 (年度) 2019-04-01 – 2022-03-31
キーワードlanguage processing / feature extraction / tense identification / feature visualization
研究実績の概要

In the second year, we aimed to and were able to improve the feature detector by integrating more functionalities, such as tense-aspect identification and various types of information structure.
The tense-aspect identification function classifies and labels grammatical tenses using the twelve commonly-used terms (e.g. past progressive, future perfect, etc.). The tense-aspect identification function also classifies finite verbs by voice, and so that feature will also be available for users. The information structure function, which identifies information focus, information flow and end-weight is currently deployed. In both functionalities the accuracy and precision can be further improved.
In the deployed feature detector, for any text submitted users can: 1. Create a text profile using standard lists such as the academic word list and academic vocabulary list; 2. Identify particular sets of words, such as TOEIC vocabulary and words related to computer science; 3. Display readability indices (e.g. Gunning Fog and Flesch Kincaid scores); 4. Show text statistics (e.g. percent of complex words, average words per sentence); 5. Identify whether sentences are front-heavy or adhere to the end-weight principle; 6. Display the thematic development of subsequent sentences (e.g. constant or ruptured), and 7. Show the information focus (e.g. new or given information). Links to the deployed version are available on the homepage of the principal investigator.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

Many of the technical challenges have been overcome. The primary focus now is on increasing the accuracy and precision of pattern-matching functions, and increasing the usability of the system.

今後の研究の推進方策

In the third year our focus will be on increasing the usability of both the text visualizer, which reveals language features in a pre-annotated corpus and the text detector, which shows language features in raw text. Functionalities developed for the text detector that can be adapted for use in the text visualizer will be identified and incorporated. A systematic evaluation of the accuracy, usability and efficacy will be conducted to identify areas for future work.

次年度使用額が生じた理由

Payment to be made to for services received but not yet invoiced.

  • 研究成果

    (4件)

すべて 2020

すべて 雑誌論文 (4件) (うち国際共著 4件、 査読あり 4件、 オープンアクセス 4件)

  • [雑誌論文] Development of an online tense and aspect identifier for English2020

    • 著者名/発表者名
      Blake, John
    • 雑誌名

      CALL for widening participation: short papers from EUROCALL 2020

      巻: 1 ページ: 36--41

    • DOI

      10.14705/rpnet.2020.48.1161

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] English Verb Analyzer: Identifying tense, voice, aspect, sense and grammatical meaning in context for pedagogic purposes.2020

    • 著者名/発表者名
      Blake, John
    • 雑誌名

      Proceedings of 8th Swedish Language Technology Conference 2020

      巻: 1 ページ: 1--5

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Automatic identification of tense and grammatical meaning in context2020

    • 著者名/発表者名
      Blake, John
    • 雑誌名

      Proceedings of the International Conference on Computers in Education 2020

      巻: 2 ページ: 739--742

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Generic integrity: Visualizing lexicogrammatical features in scientific articles.2020

    • 著者名/発表者名
      Blake, John
    • 雑誌名

      Selected online proceedings of the British Association of Applied Linguists Annual Conference 2019

      巻: 1 ページ: 1--3

    • 査読あり / オープンアクセス / 国際共著

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi