研究実績の概要 |
本研究では、複数のLSTMを並列に動作させる機構を組み合わせることで、蜘蛛の糸のように複雑に収束する1系列を可能な限り少ない誤差で予測する新たなRNNの枠組みを提案した[1][2].更に、本研究では、データ間の関連性について、グレンジャー因果検定とクラスタリングを組み合わせ、真に有用な関連時系列を取捨選択する手法を構築した.更に、多変量時系列を統合させる際には、非線形回帰手法のサポートベクトル回帰を用いることで飛躍的に予測精度を向上させた[3].提案手法は計算コストの増加が問題点であったが、ESNを用いて計算コストの向上を図った[4]. [1] Jun Rokui,“Historical time series prediction framework based on recurrent neural network using multivariate time series”,IIAI-AAI2021,pp.486-489,2021. [2] Jun Rokui, Rin Adachi,“Cell-expanded Long Short-term Memory", Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Conference on Advanced Intelligent Systems,2022. [3] 松浦 匠吾,六井 淳,"Recurrent Neural Networkに基づく複数時系列関係を考慮した時系列予測”,FIT2021講演論文集,第二分冊,pp27-32,2021. [4] 大嶽 和氣,六井 淳,"Echo State Networkを用いた高速な多変量時系列予測”,The 36st Annual Conference of the Japanese Society for Artificial Intelligence 2022,2022.
|