研究実績の概要 |
研究代表者は,幾何種数イデアルを共に創設した共同研究者である渡辺敬一氏(日本大学文理学部,明治大学研究・知財戦略機構),奥間智弘氏(山形大学理学部)とイタリアの Rossi 教授の協力の下で,前年度までの研究において,楕円型イデアルを定義し,その特徴づけに成功した。我々が研究している2次元正規特異点においては,幾何種数イデアルや楕円型イデアルは「幾何的イデアル」であり,その性質はしばしば対応する特異点解消とアンチネフサイクルの言葉で特徴付けることができる。本研究は,これらの幾何的イデアルを分類するという観点から,「正規正接錐の Gorenstein 性」の研究にシフトしつつある。この研究においては,ベースになる環は Gorenstein と仮定するが,幾何種数イデアルの場合には「正規正接錐の Gorenstein 性」は good イデアルという別の幾何的イデアルと深く関連しているように思われる。実際,good な幾何種数イデアルは,正規正接錐が Gorenstein になる正規還元種数1のイデアルとして特徴付けられる。本年度の研究成果として,楕円型イデアルの場合に, 正規正接錐が Gorenstein になるための必要十分条件として,対応するサイクルのオイラー標数が零であるという条件を与えた。結果として, 幾何種数,または, 正規還元種数が2以下の Gorenstein 環の極大イデアルに関する正規正接錐がつねに Gorenstein になることを証明することができる。さらに, ある種の楕円特異点の場合には, 幾何的な考察により, 正規正接錐が Gorenstein になる楕円イデアルは高々有限個であることなども示すことができた。これは, 可換環論的対象であるイデアルを幾何的に特徴づけることにより証明が可能になった成果の1つと考えている。
|