研究実績の概要 |
λを正整数 n の分割とする。対称群の表現論で重要な Specht module V_λは体K上の多項式環 S=K[x_1, .., x_n]の部分空間として実現される。V_λが生成する S のイデアル I_λをSpecht ideal という。M. Haiman と A. Woo は、I_λが常に被約であることを証明した他、その普遍グレブナ基底を求めた(ただし「未発表」)。前年度、代表者は大杉英史氏(関西学院大)、村井聡氏(早稲田大)と共同で上述の Haiman-Woo の結果の別証明を得ていたが、本年度に査読付き学術雑誌から出版された。 以下、Kの標数を0とする。λ=(n-d,d), (d,d,1)のとき, S/I_λはCohen-Macaulayである。C. Berkesch Zamaere, S. Griffeth, S.V. Sam は、2014年に Comm. Math. Phys. から発表した論文において、I_λ の S-上の極小自由分解のサイズと各項の free basis の対称群 S_n-加群としての構造を特定した。彼らの研究は有理Cherednik代数など表現論の高度な理論を用いているが、微分写像の記述には至らなかった。申請者は柴田孝祐氏(米子高専)と共同で、 Berkesch Zamaere らの上述の結果の別証明を得た他、微分写像の具体的な記述にも成功した。また、代表者らの研究は分岐公式など Specht module の基本的な道具しか使わないことも特徴とする。本研究を扱った論文は学術雑誌に投稿中で、査読者の指示を受け、現在細部を改訂中である。
|