研究課題/領域番号 |
19K03588
|
研究機関 | 大阪公立大学 |
研究代表者 |
壁谷 喜継 大阪公立大学, 大学院理学研究科, 教授 (70252757)
|
研究期間 (年度) |
2019-04-01 – 2024-03-31
|
キーワード | 線形化固有値問題 / 分岐解析 / ルジャンドルの陪関数 / ベッセル関数 |
研究実績の概要 |
今年度は、球対称解において不完全分岐を起こすことが知られている(過去の私の研究成果)球面帽上の非線形楕円型偏微分方程式の Dirichlet 問題の正値解について研究し、Legendre の陪関数の性質を駆使して、非球対称な固有関数に対応する固有値の漸近的な挙動をまず解明した。その後、非球対称な固有関数の周りでの分岐解析を行い、非球対称な固有関数に関しては、定数解に近い解からの局所分岐が起こっていることを解明した。これにより、球面帽領域での不完全分岐は球対称解のみで起こることが解明できた。 また、同様な解析を、ユークリッド空間内の球における非線形楕円型偏微分方程式の第三種境界値問題にも適用した。この場合も、球対称解は不完全分岐を起こすことが知られている(過去の研究成果)が、Bessel 関数の性質を駆使した非球対称な固有関数の周りでの分岐解析により、球面帽領域で解明できたことと同様に、定数解に近い解からの局所分岐が起こっていることを解明した。但し、第三種境界条件のパラメータは、Neumann 境界条件に近い場合に限られる。これらの結果は、線形化固有値問題を精密に解析し、特殊関数の性質を駆使することによって得られたものである。これらの研究成果は、国内で開催された国際研究集会で1度、国内集会で複数回講演発表を行ったが、残念ながら今年度中に学術誌に投稿するまでは至らなかった。 なお、本年発表の研究内容は、スイス・バーゼル大学の Catherine Bandle 名誉教授と明治大学総合数理学部の二宮広和教授との共同研究によるものである。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
コロナ対策が緩和され、研究成果の講演発表は何度か行うことができたが、研究内容を学術誌に投稿するには至らなかったため。
|
今後の研究の推進方策 |
線形化固有値問題の解析を含んでいる、昨年度中に投稿できなかった原稿を早急に仕上げて学術雑誌に投稿する。また、AIMS Conference など国際研究集会に参加して講演発表を行い、成果発表と共に意見交換を行う。また、Choquard 方程式という、ヘリウム原子の電子の挙動を記述する連立楕円型方程式についての解析も推進する。研究状況によっては、連合王国 Swansea 大学の Moroz 教授、あるいは、台湾國立師範大學の陳建隆教授、もしくは、韓国 Hanbat 大学の Bae 教授を訪問して意見交換を行い、研究の推進に努める。
|
次年度使用額が生じた理由 |
コロナ感染症対策のため、出張に制限がかかっていたため、想定していた研究集会への出席をとりやめるなどして、旅費にかなりの残額が発生したため。 今年度は、アメリカ合衆国で開催されるAIMS研究集会に参加して、旅費を適切に消化する。
|