研究実績の概要 |
消散項を伴う, 時間に関して3階の双曲型偏微分方程式に対して, 時間大域解の挙動を精密に同定することを目的として以下の成果を得た. 1.熱粘性流体における音の伝播を記述する線形のBlackstock's model に対して, 係数をBecker's assumptionと言われる特殊な場合に限定せず, すべての空間次元において解の一次漸近形と二次漸近形を同定した. 特に, 空間1,2次元に関してはフーリエ空間において一次漸近形が原点近傍で強い特異性を示すので取り扱いに注意が必要となる. また, 解の一次漸近展開の精密性を示す際に, 空間1,2次元とそれ以外の多次元では初期値への依存性が異なることも分かった. 2.線形双曲-放物型である熱弾性方程式の解のP波の成分を, 時間無限大において拡散波と熱核の線形和で一次漸近展開し, その最適性を証明した. その結果, 空間1,2次元では解のP波の成分が時間大域挙動において強い影響を持つことがわかった. 3.半線形双曲型偏微分方程式である Jordan-Moore-Gibson-Thompson 方程式に対して, 小さい初期値に対する時間大域解を構成してそのノルムの評価と漸近挙動を導出した. 特に非線形項から最適な時間減衰評価を示す際に, 積分区間を分割して部分積分を経由する項としない項に分けて精密な評価を行った. また, 空間1,2次元の場合は, 線形解から導かれる解の時間減衰がそれ以外の多次元の場合よりも遅いため, 解空間の設定を修正する必要があった.
|