• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

新しい対角化の手法による量子系の厳密解の研究

研究課題

研究課題/領域番号 19K03668
研究機関名古屋大学

研究代表者

南 和彦  名古屋大学, 多元数理科学研究科, 准教授 (40271530)

研究期間 (年度) 2019-04-01 – 2025-03-31
キーワード格子模型 / 厳密解 / 保存量
研究実績の概要

相互作用や外部磁場など、ハミルトニアンを構成する演算子がある種の代数構造を持つとき、それを free fermion系に変換して対角化できる。これが本研究課題の出発点となる手法である。この変換はJordan-Wigner変換の代数的な一般化とみなすことができる。この方法によって既に解かれている代表的な可解模型が対角化され、またJordan-Wigner変換では解けない模型も対角化される。またこの手法に現れる演算子から、2次元Ising模型の代数構造であるOnsager代数が生成される。
量子多体系において、保存量はその可積分性にかかわるとともに、系の物理的な性質にも大きな影響を及ぼす。例えば孤立量子系の平衡化において、局所的な保存量が自由度と同程度の数だけ存在するとき、系は通常の平衡状態には行かず、保存量によって拘束された振る舞いを示す場合がある。
以前、K.Minami, J.Phys.Soc.Jpn.(2016)で導入したfermion化の方法によってK.Minami, Nucl.Phys.B (2017)において加算個の可解模型を構成したが、そのそれぞれに対して加算個の保存量の存在を示し、その具体的な表式を得ることができた。
そのうちtransverse Ising模型の場合にはM.Grady 1982、L.Doran and M.Grady 1982、T.Prosen 1998、Y.Chiba 2024によって求められた保存量を再現し、また別にOgura et al. 2021の保存量が現れ、またそれとは別のD.B.Uglov and I.T.Ivanov 1996によって得られた保存量も再現する。結果は投稿準備中である。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

2023年度の前半は、1次元量子系とそれに等価な2次元古典系の対角化について詳細な計算を実行した。この計算はまだ継続しているが、一方で保存量について短い論文を書こうと思って始めた仕事に、当初の予想よりも時間がかかっている。

保存量を求める際には、交換関係の結果として得られる演算子をある種の樹形図を書いて分類するという直接的な方法がとられることが多いが、本研究ではHamiltonianとの交換関係の表現行列を一般的に書き下し、その固有値が0である固有空間の基底を求めることによって、可算個の模型に対して保存量を同時に書き下した。その結果は現在までに知られている結果を含み、さらに可算個の模型について新しい結果を与える。

今後の研究の推進方策

上記の可算個の1次元系について、すべての保存量を求められないかどうかを調べている。また同じ手法で扱うことができるいくつかの2次元系についても、同様にして保存量について議論できる可能性がある。特に量子情報などとの関連から興味を持たれている2次元の6角格子Kitaev模型は本研究課題の手法で基底状態を求めることができるので、保存量についてある程度は議論できることが予想される。

次年度使用額が生じた理由

今年度は8月にStatPhysに参加し、また東北大学での物理学会で講演するなど、対面での研究発表と議論がある程度再開された。ただしオンラインでの研究会も定着し旅費は以前よりもかからなくなっている。3年間の新型コロナの期間に残った研究費を次年度使用額とし、今後の研究のために有効に使いたい。

  • 研究成果

    (1件)

すべて 2024

すべて 学会発表 (1件)

  • [学会発表] 次近接相互作用のあるスピンS transverse Ising模型の厳密な帯磁率2024

    • 著者名/発表者名
      南 和彦
    • 学会等名
      日本物理学会第78回年次大会

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi