研究課題
基盤研究(C)
本研究課題では、プロセス制御監視システムによって蓄積された時々刻々変化する時系列データを利用しディープラーニング技術を応用した実プロセスで利用可能なオペレータ支援機能を実現した。具体的には、実際の化学プロセスの複数のセンサデータを予測する新しいディープラーニングモデルを提案した。化学プロセスの制御のために監視しているセンサデータ間の複雑な関連を学習するモデルであり、関連するセンサデータ間の様々な時間長の影響関係を利用し、ある一つのセンサデータの正常値予測を実施するモデルである。
生産管理、システム工学
正常時の複数の時系列データを入力情報とし、時系列データの将来の挙動を予測するモデルを開発し、熟練オペレータに対するポカミス防止、新人オペレータに対するプロセス知識における気づきを与えるオペレータ支援機能を実現した。膨大な正常時のプロセス時系列データを利用してディープラーニングによってモデルを構築する方法を提案し自動的にシステムを構築するカスタマイズレスなシステム構築手法を実現した。