研究実績の概要 |
深層学習 (deep learning) に代表される人工知能 (artificial intelligence (AI)) の進歩はあらゆる分野において革新的な変化をもたらしつつある。Deep learningが過去にブームを引き起こしたAI技術と根本的に異なる点は、データに含まれる特徴量、すなわち問題解決に必要な本質的変数であったり概念を特徴づける変数を「機械が自律的に抽出」する点にあり、ヒトの頭脳では気づき得なかった「問題解決に必要な本質的特徴量を機械が我々人間に提示する可能性」を秘めている所にある。我々は、本研究においてAIを用いたヒト腎生検画像診断システムを構築するとともに、AIを用いて腎疾患を規定する画像的特徴量の抽出を試みている。さらに、画像から得られた腎疾患を規定する特徴量がどのような病態を反映しているのか、シングルセルRNAシーケンスをもちいた解析を組み合わせている。ヒト腎生検画像診断システムの開発においては大量の教師データが必要であるため、全国24施設から約5,000例(HE, PAS, PAM, EMTの4染色で合計約20,000枚)の腎生検バーチャルスライド画像を集め、臨床データと紐づけたデータベースを構築した。シングルセルRNAシーケンスを用いた解析については、腎構成細胞の単離技術を確立し、シングルセルドライ解析においては、partition-based graph abstraction (PAGA)にRNA velocity、Niche-Netを組み合わせると、腎構成細胞の解剖学的特徴および細胞の相互作用を統合的に理解しやすくなる事などを本研究で見出した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
AIを用いたヒト腎生検画像診断システムの開発に必要な基礎的プログラミング技術は、大阪大学医学部附属病院にて腎生検を行われた約200例を対象とした解析で既に確立した。また実際の腎生検画像診断システムの開発には大量の教師データが必要であるが、こちらも全国の施設にご協力頂き、約5,000例(20,000枚のバーチャルスライドデータ)のデータを取得済みである。シングルセルRNAシーケンスにおいても、腎組織を1細胞に分離するプロトコルの最適化は既に終了しており、ドライ解析に必要な技術も確立した。このためおおむね順調に進展していると考えられる。
|