研究実績の概要 |
計算科学・データ科学に現れる超大規模線形方程式 Ax =b に対する次世代数値計算アルゴリズムを開発する.研究手法として,申請者が開発したGPBi-CG法[1]の理論(一般化積型クリロフ部分空間法),および同じく申請者らが開発したBlock IDR(s)法[2]の理論(ゾンネベルト部分空間法)を融合した解法である「一般化積型IDR法:GPIDR(s)法」(一般化ゾンネベルト部分空間法)を開発することで, 2020年以降の超大規模線形方程式への対応を可能とさせる. [1] S.-L.Zhang:SIAMJ.Sci. Comput., 18(1997), pp.537-551, [2] L. Du, S.-L.Zhang et al., J. Comput. Appl. Math., 235(2011), pp.4095-4106. 本研究における学術的問いは 「線形方程式に対する従来法の性能を超える数値解法は開発できるか?」 であり,具体的な問いは以下の3点である. 1. IDR(s)法 の理論(ゾンネベルト部分空間)とGPBi-CG法の理論(一般化積型クリロフ 部分空間)の統一理論を構築できるか? 2. 統一理論からIDR(s)法の高速性とGPBi-CG法の 頑強性を備えたアルゴリズム (GPIDR(s)法:一般化積型ゾンネベルト部分空間法)を構成できるか? 3. 近年の科学技術計算で要求される大規模線形方程式での GPIDR(s)法の有用性を検証できるか?
|
今後の研究の推進方策 |
今後の研究計画の実現については,IDR定理の拡張(一般化積型IDR定理)が研究の根幹であり,論文[3]にあるように十分把握している.さらに一般化積型IDR定理を構築するために必要なLanczos多項式についてはGPBi-CG法[2]の研究から明らかであるため,一般化積型 IDR定理の実現性は高いと考えている. さらに,一般化積型IDR定理から導出される,(GPBi-CG法とIDR(s)法の融合として位置づけられる)GPIDR(s)法の導出に当たっては,積型クリロフ部分空間法の枠組みの中でGPBi-CG法を導出した経験[1],そしてIDR定理からBlock IDR(s)法を導出した経験[3]により研究期間があれば問題なく実施できると考えている. なお,近年ではシフト線形方程式という計算物理学や最適化問題に現れる専用の解法をIDR定理に基づき開発しており[3],解法開発の職人的研究センスは向上している状況である. [1] S.-L. Zhang: SIAM J. Sci. Comput., 18(1997), pp.537-551.【査読有】, [2] L. Du, S.-L. Zhang et al., J. Comput. Appl. Math.,235(2011),pp.4095-4106. 【査読有】, [3] L. Du, S.-L. Zhang et al., J. Comput. Appl. Math., 274(2015), pp.35-43. 【査読有】 ※L.Du 氏(現:大連理工大学・副教授)は,申請者(張:Zhang)の博士課程指導学生であった.
|