• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 研究成果報告書

少数サンプルに対応した深層学習を用いた網膜症病変の自動検出処理の開発

研究課題

  • PDF
研究課題/領域番号 19K12827
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分90130:医用システム関連
研究機関大分大学 (2020-2022)
滋賀県立大学 (2019)

研究代表者

畑中 裕司  大分大学, 理工学部, 教授 (00353277)

研究期間 (年度) 2019-04-01 – 2023-03-31
キーワード医用画像 / 病変検出 / 深層学習 / 教師なし学習 / GAN / CNN / 転移学習 / 眼底画像
研究成果の概要

医用画像における病変を深層学習に基づく方法で自動検出する場合、大量のアノテーションされた画像を用意することが難しい問題がある。画像処理に基づくデータ拡張の方法が提案されているが、効果が限定的である。本研究では、眼底疾患を対象として、畳み込みニューラルネットワークの学習のための人工画像生成と、転移学習を改変した教師データを用いない学習方法を開発し、それぞれ有用であることを実験的に明らかにした。

自由記述の分野

医用画像工学

研究成果の学術的意義や社会的意義

定量的かつ再現性の高い医療診断のために人工知能が求められている。深層学習のアプリーチを採る場合、ラベル付けされた医用画像を大量に用意することが難しい問題がある。本研究は、画像の人工生成によって、不足したデータを補うことの有用性を明らかにした。希な確率で生ずる疾病の場合、異常な画像を集めることが困難であるが、転移学習の考え方の応用によって、ラベル付き画像を用いずに深層学習モデルを学習する方法の有用性も示した。これらの研究により、データ収集の困難な課題を解決することが可能となる。

URL: 

公開日: 2024-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi