• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

q-analogues of multiple zeta values and their applications in geometry

研究課題

研究課題/領域番号 19K14499
研究機関名古屋大学

研究代表者

BACHMANN Henrik  名古屋大学, 多元数理科学研究科, 特任助教 (20813372)

研究期間 (年度) 2019-04-01 – 2023-03-31
キーワードmultiple zeta values / q-analogues of MZV / modular forms
研究実績の概要

In a joint work with Jan-Willem van Ittersum I finished a project on functions on partitions and their connection to q-analogues of multiple zeta values. In this project we introduce the space of polynomial functions on partitions, which is a subspace of all functions on partitions. This space can be equipped with three different products, which can be seen as natural generalizations of the harmonic and shuffle products of multiple zeta values. We show that, after applying the so-called q-bracket, that polynomial functions on partitions give rise to q-analogues of multiple zeta values. Further we show that the limits of q->1 give (generalization) of multiple zeta values. As an application we show, that other well-known families of functions on partitions, such as shifted-symmetric functions, are contained in our space. This gives relations among multiple zeta values and provides a possible bridge between enumerative geometry and the theorey of multiple zeta values.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Eventhough the current situation made it impossible to meet my collaborator overseas, we were able to smootly finishing our research project due to various online meeting. Further I also presented these results at various seminar around Japan.

今後の研究の推進方策

It is planned to continue several small side projects related to the above mentioned project on functions on partitions. For this it is planned to visit my collaborators in Germany to discuss possible future directions. One possible future direction of the current project is to clarify the exact relationship of functions on partitions appearing in enumerative geometry and our newly introduced space of polynomial functions.

次年度使用額が生じた理由

The remaining amount will be used for traveling inside Japan and attending conferences/seminars on which the research results will be presented.

  • 研究成果

    (3件)

すべて 2022 2021

すべて 雑誌論文 (1件) 学会発表 (2件) (うち招待講演 1件)

  • [雑誌論文] Finite and symmetric Mordell?Tornheim multiple zeta values2021

    • 著者名/発表者名
      BACHMANN Henrik、TAKEYAMA Yoshihiro、TASAKA Koji
    • 雑誌名

      Journal of the Mathematical Society of Japan

      巻: 73 ページ: 1129-1158

    • DOI

      10.2969/jmsj/84348434

  • [学会発表] Polynomial functions on partitions2022

    • 著者名/発表者名
      Henrik Bachmann
    • 学会等名
      Kyushu University Lecture series
    • 招待講演
  • [学会発表] Connecting modular forms and multiple zeta values via combinatorial multiple Eisenstein series.2022

    • 著者名/発表者名
      Henrik Bachmann
    • 学会等名
      Seminar arithmetische Geometrie und Zahlentheorie, Hamburg

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi