• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実施状況報告書

総実代数体上への志村谷山予想の一般化とアーベル曲面の保型性への応用

研究課題

研究課題/領域番号 19K14514
研究機関学習院大学

研究代表者

吉川 祥  学習院大学, 理学部, 助教 (10803736)

研究期間 (年度) 2019-04-01 – 2023-03-31
キーワード楕円曲線 / モジュラー形式 / ヒルベルトモジュラー形式 / モジュラー曲線
研究実績の概要

本年度も引き続き、「楕円曲線の保型性」に関する研究を行った。ここでいう保型性とは、楕円曲線のL関数が或るモジュラー形式(より一般に保型表現)のL関数に一致するという性質であり、代数体上で定義された楕円曲線は必ずこの性質を持つことが期待されている、本研究の一つの目的は、より多くの楕円曲線に対してそれを証明することであった。
本年度は、伊藤哲史氏(京都大学)と石塚裕大氏(京都大学)と共同研究を行い、総実5次体上の楕円曲線の保型性に関する結果が得られた。これまでの先行研究において、低次の(総実)代数体上の楕円曲線の保型性の問題は、3次以下では完全に解決され、4次の場合にも定義体が5の平方根を含まない場合にはすべて解決されている。この意味で、本年度得られた結果はこれらの先行結果の次の段階と言える。
我々が得た結果をより詳しく述べると、あらゆる総実5次体上のさまざまな楕円曲線のうち、高々有限個の楕円曲線(正確にはj不変量)を除いたすべての楕円曲線が保型性を持つことを証明した。ただし、除かれた有限個の楕円曲線に関する具体的な情報(個数や定義体やj不変量)は得られていない。
別の先行結果として、以下のものがある:総実代数体$F$を固定したとき、$F$のあらゆる総実二次拡大上のすべての楕円曲線のうち、高々有限個を除いたすべての楕円曲線は保型性をもつ。本年度の結果はこれの変種であり、手法も(より発展させたものを用いているが)近いものである。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

当初に想定していた方法とは別の手法ではあるが、研究課題へのアプローチが出来、結果が得られているため。

今後の研究の推進方策

本研究の目的(楕円曲線の保型性)自体に大きな変更はないが、まずは本年度得られた結果の手法や見方をより発展させたアプローチに取り組みたい。本年度、有理数体上の5次拡大を考察したことの関連として、別の体$F$の$n$次拡大($n$は小さい自然数)上の楕円曲線に関して同様の結果が得られないかを現在考えている。この一般的な状況では安直には議論がうまく行かないが、体$F$を上手く選ぶ(たとえば円分$\mathbb{Z}_p$拡大の部分体)ことにより(別の困難は生じるが)結果が得られそうである。

次年度使用額が生じた理由

コロナ禍で出張の機会が減ったため差額が生じた。使用計画としては基本的に出張費に充てるが、研究発表の機会や共同研究の機会を作ることが第一である。また、状況に応じて海外への渡航も検討する。

  • 研究成果

    (4件)

すべて 2022 2021

すべて 雑誌論文 (1件) 学会発表 (3件) (うち招待講演 3件)

  • [雑誌論文] Reducible mod 105 representations and modularity of elliptic curves2021

    • 著者名/発表者名
      Yoshikawa Sho
    • 雑誌名

      Journal of Number Theory

      巻: 228 ページ: 208~218

    • DOI

      10.1016/j.jnt.2021.04.008

  • [学会発表] 肥田とWilesによるGalois表現の構成2022

    • 著者名/発表者名
      吉川 祥
    • 学会等名
      Dasgupta Kakdeの最近の仕事とその周辺Workshop
    • 招待講演
  • [学会発表] 総実五次体上の楕円曲線の保型性について2021

    • 著者名/発表者名
      吉川 祥
    • 学会等名
      金沢整数論オータムワークショップ2021
    • 招待講演
  • [学会発表] 総実5次体上の楕円曲線の保型性について2021

    • 著者名/発表者名
      吉川 祥
    • 学会等名
      北大整数論セミナー
    • 招待講演

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi