• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実施状況報告書

Multi-aspects of beta ensembles and related random matrix models

研究課題

研究課題/領域番号 19K14547
研究機関早稲田大学

研究代表者

Trinh Khanh・Duy  早稲田大学, 理工学術院, 准教授(任期付) (00726127)

研究期間 (年度) 2019-04-01 – 2023-03-31
キーワードbeta ensembles / random matrix theory / beta Laguerre ensembles / local statistics
研究実績の概要

This research studies spectral properties of beta ensembles and related random matrix models in case the inverse temperature beta is allowed to vary with the system size. We obtain the following results.

(1) For beta Laguerre ensembles, one of three classical beta ensembles on the real line, we completely describe the global asymptotic behavior of the empirical distribution, that is, the convergence to a limit distribution and Gaussian fluctuations around the limit. Beta Laguerre ensembles are generalizations of the distribution of the eigenvalues of Wishart matrices or Laguerre matrices, two types of random matrices in statistics, in terms of the joint density. They are now realized as eigenvalues of a random tridiagonal matrix model. For the proof, we make use of the random matrix model and extend some ideas used in the case of Gaussian beta ensembles, another classical beta ensembles.

(2) For general beta ensembles on the real line in a high temperature regime, the regime where beta tends to zero at the rate of the reciprocal of the system size, we show that the local statistics around any fixed reference energy converges to a homogeneous Poisson point process. We prove the Poisson statistics by analyzing the joint density with the help of some estimates from the theory of large deviation principle.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We have obtained two results: the global asymptotic behavior for beta Laguerre ensembles and the local asymptotic behavior for general beta ensembles in a high temperature regime. The former completely describes the limiting behavior of the empirical distribution of beta Laguerre ensembles for varying parameter beta. The latter shows the universality of a Poisson statistics in a high temperature regime.

今後の研究の推進方策

We continue to study spectral properties of beta ensembles and related random matrix models. In particular, the plan of this year is to deal with a dynamic version of beta ensembles.

次年度使用額が生じた理由

One business trip was canceled and will be moved to the next fiscal year.

  • 研究成果

    (6件)

すべて 2020 2019

すべて 雑誌論文 (2件) (うち国際共著 1件、 査読あり 2件) 学会発表 (4件) (うち国際学会 1件)

  • [雑誌論文] Poisson Statistics for Beta Ensembles on the Real Line at High Temperature2020

    • 著者名/発表者名
      Fumihiko Nakano、Khanh Duy Trinh
    • 雑誌名

      Journal of Statistical Physics

      巻: 179 ページ: 632~649

    • DOI

      https://doi.org/10.1007/s10955-020-02542-y

    • 査読あり
  • [雑誌論文] Beta Laguerre ensembles in global regime2020

    • 著者名/発表者名
      Hoang Dung Trinh, Khanh Duy Trinh
    • 雑誌名

      Osaka J. Math.

      巻: 未定 ページ: 未定

    • 査読あり / 国際共著
  • [学会発表] On the moment method for beta Wishart processes2020

    • 著者名/発表者名
      Khanh Duy Trinh
    • 学会等名
      Spectra of Random Operators and Related Topics
  • [学会発表] On beta Laguerre ensembles at varying temperature2019

    • 著者名/発表者名
      Khanh Duy Trinh
    • 学会等名
      Japanese-German Open Conference on Stochastic Analysis 2019
    • 国際学会
  • [学会発表] Local statistics for beta ensembles at high temperature2019

    • 著者名/発表者名
      Khanh Duy Trinh
    • 学会等名
      The 18th Symposium Stochastic Analysis on Large Scale Interacting Systems
  • [学会発表] On Wishart processes2019

    • 著者名/発表者名
      Khanh Duy Trinh
    • 学会等名
      One-day Symposium: Hydrodynamic limit and related topics

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi