空間的非一様性を含む反応拡散方程式に対する点凝集現象に関する研究は,数学的にも応用上も重要である.生物の発生過程において,幾何学的な情報よりも環境の非一様性の方が影響が大きいことを表している.また,非局所反応拡散方程式に対して,領域全体での積分を含むので,従来の解析法を使うことができない場合があり,新たな解析法の確立が必要である.非局所反応拡散方程式の反応拡散近似は新たな解析法の一つであり,解の挙動や安定性を調べる時に有用と考えられる.Evans関数の構築は,様々な進行波解,例えば2つの進行波を組み合わせた進行波の安定性解析にも適用可能であり,汎用性が高炒め有用であると考えられる.
|