研究実績の概要 |
これまでに東大で得られた全てのハンフリー視野(SITA standard 24-2 、30-2)による視野データ(9,139例168,383眼による82,433視野)を使用して、Variational autoencoder(VAE)により視野のノイズを取り除くアルゴリズムを構築した。VAEモデルは、24-2視野の52点の視野感度をニューラルネットワークで処理を行い、二層の中間層を通じて8次元の正規分布に圧縮し、そこからさらに二層の中間層を介して視野再構成データとして出力するものであった。訓練は10,000回繰り返し、再構成誤差の減少が飽和したことを確認した。このモデルを用い、まず3か月以内に2回視野を測定したtest retestデータセット(3か月以内に2回視野検査を測定された104例104眼の開放隅角緑内障視野)で、まず一回目に測定した視野を、前述の訓練済みのVAEモデルを用いて再構成をし、このことが視野の再現性との関連から有用かを検証した。結果として、二回目と一回目の実視野の差と、一回目の実視野と再構成された視野の差には強い正の相関がありました。このことから実測の視野をVAEを用いて再構成することは真の視野を知ることに有用である可能性が強く示唆された。次に、開放隅角緑内障眼75例117眼の視野を用いて、光干渉断層計による傍ら視神経乳頭網膜神経視線維層厚(30度毎12セクター)との機能―構造関連を解析した。この結果、再構成した視野の方が12セクターのうち11セクターで機能―構造関連が強くなっていた。
|