• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実施状況報告書

錐最適化における悪条件問題の求解

研究課題

研究課題/領域番号 19K20217
研究機関東京大学

研究代表者

ロウレンソ ブルノ・フィゲラ  東京大学, 大学院情報理工学系研究科, 助教 (80778720)

研究期間 (年度) 2019-04-01 – 2023-03-31
キーワード連続最適化 / 錐最適化 / 恭順錐 / 面縮小法
研究実績の概要

This project is focused on the analysis and development of robust approaches for conic optimization. During this first year of the project, we worked on laying the theoretical foundations for the project. Our main research achievements for this year are as follows.
(a) The paper "Amenable cones: error bounds without constraint qualifications" that introduces the notion of amenable cones was completed and published at Mathematical Programming. In that paper, a relationship between amenable cones, facial reduction and error bounds is established.
(b) An earlier work on the complete solvability of SDPs using an interior point oracle was extended to all conic linear programs. The main result is that, assuming the capability of solving "well-behaved" problems, we may solve any arbitrary conic linear program through a combination of techniques including the so-called "double facial reduction". This paper is currently under review.
(c) We proved a few more results on the geometry of amenable cones. We will also proved results on convergence rates of several algorithms under general error bounds. Furthermore, error bounds for non-amenable cones are also being explored. These results will be discussed in future papers.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

One of the paper was accepted at Mathematical Programming, while another one is at the second round of peer review.
The results on amenable cones were presented in a few conferences in workshops during 2019.
We also have two more papers that are nearing completion and two more that are still in the initial stages.

今後の研究の推進方策

For the next fiscal year, the plan is to continue the analysis of amenable cones and their geometry. This will include analysis of algorithms under error bound conditions that take into account ill-behaved conic programming instances. We will also explore the limits of the class of amenable cones.
Meanwhile, we will continue the writing and development of the papers that were started during the first year.

次年度使用額が生じた理由

A number of conferences and research meetings that were scheduled to happen in February/March were cancelled or rescheduled. Some of those conferences might happen at a later date, so I might need to use to the budget to attend these conferences.

  • 研究成果

    (8件)

すべて 2019 その他

すべて 国際共同研究 (3件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件) 学会発表 (4件) (うち国際学会 4件、 招待講演 3件)

  • [国際共同研究] University of New South Wales/Monash University(オーストラリア)

    • 国名
      オーストラリア
    • 外国機関名
      University of New South Wales/Monash University
  • [国際共同研究] Hong Kong Polytechnic University(中国)

    • 国名
      中国
    • 外国機関名
      Hong Kong Polytechnic University
  • [国際共同研究] UNC at Chapel Hill(米国)

    • 国名
      米国
    • 外国機関名
      UNC at Chapel Hill
  • [雑誌論文] Amenable cones: error bounds without constraint qualifications2019

    • 著者名/発表者名
      Bruno F. Lourenco
    • 雑誌名

      Mathematical Programming

      巻: 出版予定 ページ: -

    • DOI

      10.1007/s10107-019-01439-3

    • 査読あり / 国際共著
  • [学会発表] On amenable cones and error bounds2019

    • 著者名/発表者名
      Bruno F. Lourenco
    • 学会等名
      RICAM Special Semester on Optimization - Workshop 6 - Conic and Copositive Optimization
    • 国際学会 / 招待講演
  • [学会発表] Amenable cones and error bounds2019

    • 著者名/発表者名
      Bruno F. Lourenco
    • 学会等名
      Workshop on Geometry and Optimisation - UNSW
    • 国際学会 / 招待講演
  • [学会発表] Amenable cones and error bounds2019

    • 著者名/発表者名
      Bruno F. Lourenco
    • 学会等名
      NACA-ICOTA2019 - Hakodate
    • 国際学会 / 招待講演
  • [学会発表] Amenable cones and error bounds2019

    • 著者名/発表者名
      Bruno F. Lourenco
    • 学会等名
      6th ICCOPT - Berlin
    • 国際学会

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi