• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実施状況報告書

Unifying multiple RGB and depth cameras for real-time large-scale dynamic 3D modeling with unmanned micro aerial vehicles

研究課題

研究課題/領域番号 19K20297
研究機関九州大学

研究代表者

THOMAS DIEGO  九州大学, システム情報科学研究院, 助教 (10804651)

研究期間 (年度) 2019-04-01 – 2021-03-31
キーワードRGB―D SLAM / Unmanned vehicle / sensor fusion / dynamic modeling / real-time
研究実績の概要

I investigated techniques for 3D sensing from 2D videos. Our proposed method for reconstructing dense 3D mesh from mobile phones was published at the international conference on 3D vision 3DV2019.
I investigated theory-supported depth fusion methods for a unified 3D mapping framework that does not depend on the type of 3D sensor used. We proposed to formulate the depth fusion problem into the variational message passing framework. Our proposed method for robust real time depth measurement fusion was published at the international conference on 3D vision 3DV2019.
I pursued research on 3D shape estimation from a single color image. The results of this research have been accepted for publication at the international conference on Computer Vision and Pattern Recognition CVPR 2020.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

It is necessary to combine standard color cameras with depth sensors in a unified 3D reconstruction framework for outside 3D mapping. Our results (published at 3DV 2019) have shown promising possibilities for 3D mapping when using 2D videos.

We proposed a new theory supported depth fusion method that is robust and only require a statistical characteristic of the sensors. Our results (published at 3DV2019) unlock the possibility to merge different sensors into a unified 3D mapping framework.

In some specific situations such as the 3D reconstruction of well-known objects like the human body, deep learning has proven to be a powerful tool. We proposed a new method and demonstrated (in our paper accepted at CVPR2020) impressive performances on publicly available datasets.

今後の研究の推進方策

The remaining tasks to achieve these goals are three-fold:
(1)Fusion of RGB and depth sensors embedded on a micro aerial vehicle (MAV). Four RGB cameras will be mounted in a rig fashion around the MAV and all data will be fused by using a unified framework based on our proposed Variational Message Passing depth fusion method.
(2)Different objects in the scene will be segmented out and one surface will be fitted to each object. When new data is captured, surface deformations will be estimated and the 3D model will be updated and enlarged if necessary.
(3)We will extract semantic information for each reconstructed object. We will evaluate the performance of our system with real-world experiments on large scale indoor-outdoor dynamic 3D scene reconstruction in the campus of the university.

次年度使用額が生じた理由

We need to build an actual prototype and evaluate our proposed system. We are going to buy a MAV onto which we will embed 4 RGB-D cameras (the Intel RealSense cameras). We already have the RGB-D cameras in the laboratory, so we only need to buy the MAV.

To build the prototype, calibrate the cameras and manipulate the drone is a tedious task that requires some implementation skills. Therefore, we will hire an internship student for 4 months to help build the prototype. The objectives of the internship will be: (1) design the prototype; (2) calibrate the cameras; (3) capture raw data.

  • 研究成果

    (6件)

すべて 2019 その他

すべて 国際共同研究 (1件) 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件) 学会発表 (3件) (うち国際学会 2件、 招待講演 1件)

  • [国際共同研究] Gustave Eiffel University(フランス)

    • 国名
      フランス
    • 外国機関名
      Gustave Eiffel University
  • [雑誌論文] Revisiting Depth Image Fusion with Variational Message Passing2019

    • 著者名/発表者名
      Thomas Diego、Sirazitdinova Ekaterina、Sugimoto Akihiro、Taniguchi Rin-ichiro
    • 雑誌名

      2019 International Conference on 3D Vision (3DV)

      巻: 0 ページ: 328-337

    • DOI

      10.1109/3DV.2019.00044

    • 査読あり / 国際共著
  • [雑誌論文] Mobile Photometric Stereo with Keypoint-Based SLAM for Dense 3D Reconstruction2019

    • 著者名/発表者名
      Maxence Remy、Uchiyama Hideaki、Kawasaki Hiroshi、Thomas Diego、Nozick Vincent、Saito Hideo
    • 雑誌名

      2019 International Conference on 3D Vision (3DV)

      巻: 0 ページ: 574-582

    • DOI

      10.1109/3DV.2019.00069

    • 査読あり / 国際共著
  • [学会発表] Merging SLAM and photometric stereo for 3D reconstruction with a moving camera2019

    • 著者名/発表者名
      Maxence Remy, Hideo Saito, Hideaki Uchiyama, Hiroshi Kawasaki, Vincent Nozick, Diego Thomas
    • 学会等名
      25th International Workshop on Frontiers of Computer Vision
    • 国際学会
  • [学会発表] Regression of 3D human body shapes from a single image2019

    • 著者名/発表者名
      Hayato Onizuka, Diego Thomas, Zehra Hayirci, Akihiro Sugimoto, Hideaki Uchiyama, Rin-ichiro
    • 学会等名
      Machine Perception and Robotics 2019
    • 国際学会
  • [学会発表] 3D human body reconstruction using RGB-D camera2019

    • 著者名/発表者名
      Diego Thomas
    • 学会等名
      Asia Pacific Society for Computing and Information Technology 2019 Annual Meeting (APSCIT 2019 Annual Meeting)
    • 招待講演

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi