• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2020 年度 実施状況報告書

Deep forest for disaster monitoring with multi-temporal and multi-modal earth observation data

研究課題

研究課題/領域番号 19K20309
研究機関国立研究開発法人理化学研究所

研究代表者

Xia Junshi  国立研究開発法人理化学研究所, 革新知能統合研究センター, 研究員 (00830168)

研究期間 (年度) 2019-04-01 – 2022-03-31
キーワードDamage mapping / Machine learning / Deep forest / Multi-source datasets / Siamese networks
研究実績の概要

The research achievements can be summarized as follows:
1. We have made several damage responses with Group Earth Observation (GEO), such as 2020 Chinese Summer Flood, 2020 Beirut explosion, 2021 Indonesia Floods and landslides. In the disaster responses, we have applied the image preprocessing (i.e., noise filtering), transfer learning, Siamese convolutional neural networks (CNN), noisy label learning and post-processing to provide the change detection and building damage mapping.
2. We have constructed very high-resolution (1m) Gaofen-3 Synthetic Aperture Radar(SAR) datasets for building semantic segmentation. For the datasets, we compare the performance of difference baselines, and give the guidelines and roadmap for the future studeis. The datasets will be extend for the use of damage mapping.
3. We have constructed the multimodal (1 m high-resolution optical and SAR) datasets (more than 10 events) for damage mapping and proposed a general framework of learning from multimodal and multitemporal earth observation data for building damage mapping.
4. We have developed the ensemble of diverse Siamese CNN, such as the Unet with different encoders and attention mechanism, for building damage mapping.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The project was performed smoothly. Based on the large scale building damage datasets, we have developed multiple methods to improve the accuracy, and provide the building damage mapping for rapid damage response.

今後の研究の推進方策

We have already developed the methods for the xView2 and our multiple source datasets. In the next fiscal year, my research plan includes
1. Develop the efficient building damage mapping with the combination of deep forest and its variants
2. Enlarge the xView2 database with the deep learning models and Maxar open disaster program
3. Develop the transfer learning to predict the building damage mapping of new events from the previous events

次年度使用額が生じた理由

We will consider to submit the papers to several international conference and journals. We will buy the high-resolution optical and SAR datasets.

  • 研究成果

    (3件)

すべて 2021 2020

すべて 雑誌論文 (2件) (うち国際共著 1件、 査読あり 2件、 オープンアクセス 1件) 学会・シンポジウム開催 (1件)

  • [雑誌論文] Building Damage Detection Using U-Net with Attention Mechanism from Pre- and Post-Disaster Remote Sensing Datasets2021

    • 著者名/発表者名
      Wu Chuyi、Zhang Feng、Xia Junshi、Xu Yichen、Li Guoqing、Xie Jibo、Du Zhenhong、Liu Renyi
    • 雑誌名

      Remote Sensing

      巻: 13 ページ: 905~905

    • DOI

      10.3390/rs13050905

    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Learning from multimodal and multitemporal earth observation data for building damage mapping2021

    • 著者名/発表者名
      Adriano Bruno、Yokoya Naoto、Xia Junshi、Miura Hiroyuki、Liu Wen、Matsuoka Masashi、Koshimura Shunichi
    • 雑誌名

      ISPRS Journal of Photogrammetry and Remote Sensing

      巻: 175 ページ: 132~143

    • DOI

      10.1016/j.isprsjprs.2021.02.016

    • 査読あり
  • [学会・シンポジウム開催] 2020 Conference on Computer Vision and Pattern Recognition2020

URL: 

公開日: 2021-12-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi