• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2021 年度 実績報告書

Learning conversation agents for long-vision response generation in multi-round communications

研究課題

研究課題/領域番号 19K20345
研究機関徳島大学

研究代表者

康 シン  徳島大学, 大学院社会産業理工学研究部(理工学域), 助教 (80777350)

研究期間 (年度) 2019-04-01 – 2022-03-31
キーワードlong-vision conversation / dialogue topic tagging / neuro-symbolic AI / DialogQuality Evaluation
研究実績の概要

We refined the automatic tagging of dialogue- and utterance-level topics to Japanese Twitter conversations and proposed a neuro-symbolic model for the automatic dialogue quality evaluation. We improved the strategic conversation learning procedure by training the utterance generator with a precise and meaningful topic conversation corpus and training a dialogue quality discriminator with a neuro-symbolic model.
Specifically, we built the topic tagging system by encoding dialogues, utterances, and words in the same semantic space, took cluster centers as topics, and created a topic-transition diagram. We proposed 3 criteria for evaluating the match of topics and dialogues. Results suggested that the clusters indicated meaningful topics and precise match of topics and dialogues were obtained by restricting the lower bound of utterance length in 10 to 20.
We proposed a neuro-symbolic method for automatic dialogue quality evaluation, in which speaker identity, position of utterance, and dialogue topics were provided as the symbolic knowledge to facilitate a transformer-based model. The method achieved the best dialogue quality evaluation result in NTCIR-16 DialEval-2 Task.
We developed the strategic conversation learning procedure based on the refined topic-conversation corpus and the automatic dialogue quality evaluator. Our preliminary study suggested that matching of topic and utterance was essential to improve the succeeding rate in generating strategic conversations and that the neuro-symbolic method was helpful to detect logical flaws in the generated conversations.

  • 研究成果

    (6件)

すべて 2022 2021

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (5件) (うち国際学会 5件)

  • [雑誌論文] The AI Development Through Transforming Tacit Knowledge to Explicit Knowledge of Nurses' Dialogue for Patients with Dementia2021

    • 著者名/発表者名
      Hirokazu Ito, Kazuyuki Matsumoto, Xin Kang, Tetsuya Tanioka, Yuko Yasuhara, Rozzano De Castro Locsin and Fuji Ren
    • 雑誌名

      International Journal of Advanced Intelligence (IJAI)

      巻: 12 ページ: 11-21

    • 査読あり
  • [学会発表] Creating a Japanese dialogue corpus with multi-level topic analysis2022

    • 著者名/発表者名
      Yuma Komoto, Xin Kang and Fuji Ren
    • 学会等名
      2022 4th International Conference on Natural Language Processing
    • 国際学会
  • [学会発表] Improvement of Japanese Text Emotion Analysis by Active Learning Using Transformers Language Model2022

    • 著者名/発表者名
      Tatsuya Ikegami, Xin Kang and Fuji Ren
    • 学会等名
      2022 14th International Conference on Computer Research and Development (ICCRD)
    • 国際学会
  • [学会発表] TUA1 at the NTCIR-16 DialEval-2 Task2022

    • 著者名/発表者名
      Fei Ding, Xin Kang, Yunong Wu, Fuji Ren
    • 学会等名
      Proceedings of the 16th NTCIR Conference on Evaluation of Information Access Technologies
    • 国際学会
  • [学会発表] Prediction and Generation of Multiple Complex Drawing Figures From Partial Drawing Sequences2021

    • 著者名/発表者名
      Kubono Yusuke, Shun Nishide, Xin Kang and Fuji Ren
    • 学会等名
      2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)
    • 国際学会
  • [学会発表] Classification of Steel Strip Surface Defects Based on Optimized ResNet182021

    • 著者名/発表者名
      Hao Zhuangzhuang, Fuji Ren, Xin Kang, Ni Hongjun, Lv Shuaishuai and Wang Hui
    • 学会等名
      2021 IEEE International Conference on Agents (ICA)
    • 国際学会

URL: 

公開日: 2022-12-28  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi