• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2022 年度 実施状況報告書

学術論文検索におけるユーザの視点に基づいたブーリアン型検索クエリ作成支援の研究

研究課題

研究課題/領域番号 19K20629
研究機関中央大学

研究代表者

福田 悟志  中央大学, 理工学部, 助教 (10817555)

研究期間 (年度) 2019-04-01 – 2024-03-31
キーワード情報検索 / 学術論文検索 / 高再現率
研究実績の概要

本年度は,ユーザが考案したブーリアン型検索クエリに対して,検索条件ANDで結合する候補語を推薦するシステムを構築した.提案システムでは,検索クエリとANDで結合される語は,検索クエリと関連性が高く,さらにいずれの検索語と同義的あるいは類似的でないものが適切であるという仮定に基づき,トピックモデルおよび単語分散表現による単語分散表現を用いて推定を行った.まず,Latent Dirichlet Allocationを用いて,検索クエリと関連している可能性の高い語をランク付けする.次に,word2vecを用いて,いずれの検索語と同義的かつ類似的でない可能性の高い語をランク付けする.そして,これら2種類の結果を統合し,最もランクの高い語から順に候補語としてユーザに提示する.
実験では,NTCIR-1 ,-2データセットに収録されている15種類の検索課題に対して考案した検索クエリを用いて,システムが提示した上位5件の候補語を検証した.具体的には,検索クエリを用いたクエリ尤度モデルによるランキングを行い,ランキング結果の上位100, 200, 300, 400, 500件を検索結果として獲得する場合に対する再現率により,初期の検索クエリおよびシステムが出力した候補語に対してユーザが最も再現率が向上する選択を行った場合を比較し,検索性能の変化を検証した.なお,本実験では,候補語に対するユーザの操作は,上位5件の候補語から1つの語を選択および適切な語が出力されていなかったため選択しないことを仮定している.その結果,検索結果として獲得する論文数の各条件において,平均で4.44%の向上が期待できることが確認された.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

実験において,システムが出力した上位5件の候補語群に再現率が向上する語がどの程度含まれていたか検証を行い,再現率が向上する候補語が出力されなかった検索課題が6件存在していたことが明らかになった.
そのため,検索性能の向上に対する更なる改善が必要であるといえる.

今後の研究の推進方策

ユーザへの候補語の提示において,その語に対する追加情報も併せて表示するといった,適切な語の効果的な選択方法を検討する.また,ユーザによる検索クエリの作成において,ANDによる語の結合に加えて,検索条件ORによる検索語に対する同義語・類似語の結合や不適切な検索語の削除といった操作も必要である.そのため,上記の操作を含めた効果的なブーリアン型検索クエリの作成支援システムを開発していく.

次年度使用額が生じた理由

新型コロナウイルスの影響で学会や国際会議がオンラインでの開催となり,航空機代や宿泊費等が不要となった.
また,被験者を通じた実験が行えず,被験者に支払う人件費・謝金が余った.

  • 研究成果

    (1件)

すべて 2023

すべて 学会発表 (1件)

  • [学会発表] 学術論文検索におけるAND と結合する語の推薦の検討2023

    • 著者名/発表者名
      福田悟志
    • 学会等名
      情報処理学会 第150回情報基礎とアクセス技術・第128回ドキュメントコミュニケーション合同研究発表会

URL: 

公開日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi