• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2019 年度 実施状況報告書

A convolutional neural network based approach for generating full PET/CT image series from shorter scan time

研究課題

研究課題/領域番号 19K20685
研究機関国立研究開発法人量子科学技術研究開発機構

研究代表者

BhusalChhatkuli Ritu  国立研究開発法人量子科学技術研究開発機構, 放射線医学総合研究所 分子イメージング診断治療研究部, 研究員(任非) (50836591)

研究期間 (年度) 2019-04-01 – 2022-03-31
キーワードPET/CT / neural networks / list mode PET / image generation
研究実績の概要

- PET/CT data from 13 Pancreatic Cancer patients have been collected.
- Those collected data have been used for analysis using convolutional neural networks.
- The network was trained using the dynamic list mode PET/CT scans as training images and the delayed scan as the label/target image.
- Leave one out cross validation technique was used for the validation.
- The generated delayed images were analysed to evaluate the performance of the convolutional neural network.
- Analysis shows successful delayed scan generation with minimum error.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

- 13 patient datasets has already been collected.
- Though further data sets required, the result was significant enough to suggest the successful generation.
-From these results, the abstract has been submitted for a conference and we are in a process of completing the first draft of journal paper.

今後の研究の推進方策

- We still have to collect more patient datasets.
- Perform k-fold cross validation and more analysis.
- Evaluate the performance of our networks using data obtained from different machine.
- Present and publish the result.

次年度使用額が生じた理由

We already had a GPU workstation computer available this year, so the money will be used in buying a better version according to the progress of the research and on paper publishing and conference attendance

URL: 

公開日: 2021-01-27  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi