研究成果の概要 |
本研究においては, Landau-Ginzburg(以下, LG)模型と呼ばれる, 代数多様体とその上の関数の組についての変形とその(指数的)周期について調べました. 研究の指針は, ミラー対称性予想と呼ばれるFano多様体との対応関係です. 主な研究成果は, 1. 指数的周期と関連の深い, 指数型の頂点作用素の代数構造について, プレプリントを執筆したこと. 2. Fano多様体の同変量子コホモロジーに対応すべき, LG模型の変形から周期積分を通じて得られる微分・差分加群に対するStokes構造についてのプレプリントを執筆したこと. です.
|
研究成果の学術的意義や社会的意義 |
本研究は, 数理物理学におけるミラー対称性や共形場理論のアイデアに基づく数学的構造の研究であるため, その進展, 理解の深まりは, これらの理論に対するより明確な理解につながると考えている. さらに, 差分方程式と呼ばれる離散的な対象に対する代数的なStokes構造の理論を確立することは, 学術的な意義もあると考えている.
|