• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2023 年度 実施状況報告書

人工衛星データと深層学習を用いた福島原発事故に係る環境評価

研究課題

研究課題/領域番号 19K22929
研究機関京都大学

研究代表者

大庭 ゆりか  京都大学, 情報学研究科, 研究員 (30816921)

研究分担者 伊勢 武史  京都大学, フィールド科学教育研究センター, 准教授 (00518318)
研究期間 (年度) 2019-06-28 – 2025-03-31
キーワード深層学習 / 放射線災害 / リモートセンシング / 森林生態系 / 環境保全
研究実績の概要

今年度は、昨年度に再整備した低解像度の無償人工衛星データから構成される教師画像データベースの再点検を実施し、更新・変更が必要なデータの探索および抽出を行い、データベースを更新した。これに伴って、更新後の教師画像データベースを用いて構築する画像識別モデルをベースとした高解像度の有償人工衛星画像データへの適用が可能なモデル開発のための準備を行い、さらに高解像度人工衛星画像データを解析するために必要な環境構築やデータ処理プロトコルの開発を進めた。また、公開されている除染実施区域についての追加の情報収集を行い、その情報をもとに新たなフィールド調査のサイト選定や現地で取得するデータのリストアップおよび作業内容の検討等、フィールド調査の準備を行った。

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

新型コロナウイルス感染症流行のため、予定していたフィールド調査を延期せざるを得なかったため。

今後の研究の推進方策

2024年度は、2023年度に予定していたフィールド調査を実施する。併せて高精細な有償の人工衛星画像データを取得して、それらのデータに除染区域自動識別モデルを適用し、モデル精度の検証を行う。検証結果に応じて、必要なモデルの再構築を行い、モデル精度の向上を目指す。さらに、モデルを使用して抽出した地域の森林データの解析を行い、森林生態系への除染の影響を評価する。

次年度使用額が生じた理由

2023年度は、新型コロナウイルスの感染状況を考慮して調査計画を延期したため、フィールド調査やその結果をもとに行う予定であった有償の人工衛星画像データの取得が困難であった。2024年度は、延期していたフィールド調査を実施し、併せて有償の人工衛星画像データを取得する。

URL: 

公開日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi